

TITOLO: Piano di recupero area ex caserma Curtatone

UBICAZIONE: ITALIA - Toscana - Pisa

**ELABORATO** 

SCALA GRAFICA: RELAZIONE GEOLOGICA-GEOTECNICA E

OGGETTO ELAB.: MODELLAZIONE SISMICA DEL SITO

ID DOCUMENTO: FHT PISA PP 00 000 GEO 02 02 000 CG

**VERSIONE ELABORATO** 

VERSIONE: 1

DATA: 02-08-2021 REV: 2

OGGETTO:

**PROGETTISTI** 

## Pierattelli Architetture S.r.l.

via pandolfini, 12 - 50121 firenze tel. 055/2346884 - fax 055/2226034



CAPOGRUPPO: Arch. Massimo Pierattelli | Timbro e Firma

RESP. TECNICO Arch. Massimo Pierattelli

**PROGETTAZIONE:** 

RESP. PRESTAZIONE Dott. Geol. Marco Toschi

SPECIALISTICA

#### PROJECT MANAGER:

#### NOTE DI PROPRIETA' E DATI INVESTIRE:



Viale C. Castracani, 194/F -Arancio - Lucca Telefono/Fax 0583 469588 Mobile 347 4842326 P. IVA: 01746700465 e-mail: marco.toschi@iol.it

#### **COMUNE DI PISA**

#### PROGETTO DI RIQUALIFICAZIONE DELLA EX CASERMA CURTATONE-MONTANARA IN PISA

#### RELAZIONE GEOLOGICA-GEOTECNICA E MODELLAZIONE SISMICA DEL SITO

RICHIEDENTE: InvestiRE Società di gestione del risparmio S.p.A.

Relazione Tecnica

Agosto 2021

#### Indice

| 1 PREMESSA                                       | 3  |
|--------------------------------------------------|----|
| 2 CARATTERI GEOLOGICI GENERALI                   | 4  |
| 2.1 – Geologia e geomorfologia                   | 4  |
| 2.2 - Idrogeologia                               | 4  |
| 3. – GEOGNOSTICA                                 | 5  |
| 3.1 – Sondaggio geognostico                      | 5  |
| 3.2 – Prove penetrometriche                      |    |
| 3.3 - Indagine geofisica                         | 6  |
| 3.4 -prelievi campioni indisturbati              | 6  |
| 4 SUCCESSIONE STRATIGRAFICA E MODELLO GEOTECNICO | 7  |
| 5 SISMICITÀ                                      |    |
| 5.1 - analisi del terreno                        | 9  |
| 5.2 - azione sismica                             | 9  |
| 5.3 - stima della pericolosità sismica           | 10 |
| 5.4 - parametri sismici                          | 11 |
| 5.1. – FREQUENZA FONDAMENTALE DEL SOTTOSUOLO     | 13 |
| 6. – STABILITA' NEI CONFRONTI DELLA LIQUEFAZIONE | 14 |
| 7 ASPETTI IDRAULICI                              | 15 |

#### Figure

- CARTA DELLE INDAGINI
- MODELLO STRATIGRAFICO/GEOTECNICO

#### Allegati

- 1. Tabulati e diagrammi delle prove penetrometriche
- 2. Elaborazione indagine MASW
- 3. Elaborazione analisi di rumore HVSR
- 4. Certificazioni sondaggio geognostico
- 5. Certificazioni analisi di laboratorio
- 6. Elaborazione prova sismica in foro (down hole)



#### 1. PREMESSA

Su incarico ricevuto da InvestiRE Società di gestione del risparmio S.p.A. è stata effettuata la caratterizzazione e modellazione geologica, geotecnica e sismica del sito su cui si prevede la riqualificazione della ex Caserma Curtatone-Montanara in Pisa.

La presente relazione ottempera a quanto richiesto dal Decreto Ministeriale 17.01.2018 - Testo Unitario Norme Tecniche per le Costruzioni ed è finalizzata alla ricostruzione del modello geologico, geotecnico e sismico dell'area di sedime e si ricollega, per quanto concerne la verifica della pericolosita' sotto il profilo geologico, idraulico e sismico e le condizioni di fattibilita' del progetto, alla Relazione Geologica già redatta dallo scrivente a supporto dello stesso Piano di recupero, recante data 15 dicembre 2020.



#### 2. - CARATTERI GEOLOGICI GENERALI

L'area oggetto di recupero si colloca nel centro storico di Pisa, in sinistra idrografica del F. Arno, su terreni pianeggianti posti alla quota di circa 3.3÷3.6 s.l.m. e si estende per circa 11.000 metri quadrati.

#### 2.1 - Geologia e geomorfologia

Dal punto di vista geologico la zona è caratterizzata da depositi geologicamente recenti (Pleistocene-Olocene) di ambiente lagunare e palustre; si tratta di limi, argille e sabbie fini, intercalati a sabbie eoliche. L'area di intervento si caratterizza per la presenza – in superficie - di materiale di riporto. In generale si tratta di terreni eterogenei rimaneggiati, con caratteristiche geotecniche molto variabili in relazione al tipo di materiale, quindi la coesione può variare molto in relazione al contenuto locale di argilla o limo e l'angolo di attrito interno al tenore di materiale sabbioso o ghiaioso grossolano (v. Quadro Conoscitivo R.U. – CARTA GEOLOGICA e CARTA GEOLOGICO-TECNICA).

Nel volume di nostro interesse, procedendo dal piano di campagna verso il basso, oltre il riporto di spessore variabile intorno a due metri, si incontrano strati misti di limi-argillosi e sabbie, di colore marrone giallastro/olivastro, per una potenza complessiva di circa 8/9 metri. Tale orizzonte sovrasta un potente livello francamente argilloso che, secondo le conoscenze generali, si può rinvenire anche fino alla profondità di circa 40 metri.

#### 2.2 - Idrogeologia

Dal punto di vista idrogeologico è possibile fare le seguenti considerazioni di carattere generale: nel sottosuolo sono presenti tre principali orizzonti idrici: uno superiore - freatico, due inferiori - confinati.

Ai fini dell'intervento in parola è di stretto interesse comprendere il sistema acquifero freatico che si presenta più o meno continuo e comprende alcune limitate falde sospese, con livelli di falda posti mediamente fra uno e due metri dal piano di campagna. Il livello freatico, secondo la misurazione effettuata dal sottoscritto durante le indagini geognostiche è oscillato tra la profondità di circa 1,20 m dal piano di campagna del dicembre 2020 e la profondità di circa 2,95 m dal piano di campagna del giugno 2021.



#### 3. – GEOGNOSTICA

Sulla base dell'assetto geologico descritto, in relazione al progetto presentatomi, alla luce di quanto richiesto dal D.M. 17.01.2018 e in ottemperanza al Regolamento D.P.G.R. n. 36/R del 9 Luglio 2009, sono state effettuate le seguenti indagini geognostiche, geofisiche e di laboratorio.

- n. 1 sondaggio geognostico a carotaggio continuo in corrispondenza del sedime del fabbricato di progetto, prelievo di n. 3 campioni di terreno indisturbato e successive analisi di laboratorio. Tale indagine con lo scopo di effettuare una precisa ricostruzione del profilo stratigrafico nel volume significativo e definire le proprietà fisico-meccaniche dei terreni.
- **n. 5 prove penetrometriche** eseguite in modalità statica **(CPT)**, mirate ad estendere il dato puntuale del sondaggio all'intero sedime del fabbricato.
- n. 1 prospezione sismica in onde di superficie MASW
- n. 1 prospezione sismica in foro mediante tecnica Down Hole entrambe per ricostruire il profilo verticale della velocità delle onde di taglio (V<sub>s</sub>) e valutare quindi il valore del parametro Vsequivalente necessario alla determinazione della categoria di sottosuolo di fondazione.

#### n. 1 acquisizione HVSR

utile per determinare la freguenza fondamentale del sottosuolo

#### 3.1 – Sondaggio geognostico

Tale indagine, di tipo diretto, ha avuto lo scopo di ricostruire il profilo stratigrafico e definire le proprietà fisico-meccaniche dei terreni mediante prelievo di n. 3 campioni di terreno indisturbato. Il sondaggio è stato spinto alla profondità di metri VENTI a carotaggio continuo e successivamente a distruzione di nucleo fino alla profondità di metri 31, per consentire la messa in opera del tubo in PVC di diametro 3", necessario per la prova sismica in foro (Down Hole).

Come anticipato il sondaggio a carotaggio continuo ha raggiunto la profondità di metri 20 dal piano di campagna, consentendo il prelievo di n. 3 campioni di terreno indisturbato, alla profondità di 3,0÷3,5 6.0÷6.5 e 16,0÷16,5 metri, in terreni argilloso-limo-sabbiosi. Il sondaggio è proseguito poi "a distruzione di nucleo" fino alla profondità di metri 31 dal piano di campagna. Ditta esecutrice Mappo Geognostica s.r.l.. In ALLEGATO N. 04 si riporta il log del sondaggio con



descrizione della stratigrafia attraversata e ogni notizia riguardante l'esecuzione dello stesso.

#### 3.2 – Prove penetrometriche

Sono state effettuate n. 5 prove penetrometriche in modalità statica (CPT). Lo strumento utilizzato è un penetrometro statico-dinamico Pagani Geothecnical Equipment modelloTG63/200 da 20 t di spinta avente le seguenti caratteristiche:

- punta conica meccanica Ø 35.7 mm, angolo di apertura α= 60°
- manicotto laterale di attrito tipo 'Begemann'
- velocità di avanzamento costante V = 2 cm / sec ( ± 0,5 cm / sec )

Maggiori specifiche tecniche sono riportate in Allegato n. 01, dove sono inoltre riportate le misure di campagna (alla punta e laterale) effettuate ogni 20 cm di avanzamento. Sulla base del rapporto: F=(qc / fs) (Begemann 1965-Raccomandazioni A.G.I. 1977) sono state effettuate le scelte litologiche e pertanto la ricostruzione stratigrafica dei terreni attraversati. Le letture effettuate, secondo correlazioni proposte da vari autori, hanno consentito infine la determinazione dei principali parametri geotecnici. Le penetrometrie effettuate hanno consentito di indagare i terreni fino alla profondità di metri quindici.

#### 3.3 - Indagine geofisica

Sulla base dell'indagine geofisica di tipo sismico Down Hole sono stati determinati valori della velocità media delle onde elastiche di taglio nei primi 30 metri di profondità a partire dal piano di campagna. Per maggiori dettagli si rimanda all'elaborazione della prospezione riportata in ALLEGATO N. 06.

#### 3.4 -prelievi campioni indisturbati

I campioni di terreno indisturbato sono stati prelevati durante l'esecuzione del sondaggio, alla profondità di di 3,0÷3,5 6.0÷6.5 e 16,0÷16,5 metri; i campioni sono stati sigillati in cantiere immediatamente dopo il prelievo e sottoposti ad analisi di laboratorio. Sono state effettuate le seguenti analisi di laboratorio:

- PARAMETRI FISICI (camp. n. 1,2 e 3)
- PROVA DI TAGLIO DIRETTO CONSOLIDATO DRENATO (camp. n. 1 e 2)
- ESPANSIONE LATERALE LIBERA (camp. 3)



Laboratorio esecutore: LABOTER s.n.c. In ALLEGATO N. 05 si riportano i certificati di prova.

#### 4. - SUCCESSIONE STRATIGRAFICA E MODELLO GEOTECNICO

I risultati delle indagini citate, raffrontati con le conoscenze generali della zona, hanno consentito di ricostruire il seguente profilo stratigrafico/geotecnico, da considerare sostanzialmente omogeneo alla scala di intervento. Trattasi di quattro livelli (unità geotecniche) per le quali si indicano i parametri geotecnici mediante una stima ragionata e cautelativa dei parametri medi:

#### da metri 0.00 a metri 2.20 - UNITA' GEOTECNICA "A":

terreno rimaneggiato/riportato prevalentemente sabbioso frammisto a materiale arido minuto e laterizi, colore marrone scuro

 $\gamma = 1.78 \text{ t/mc}$ 

 $\gamma_{\text{sat}}$ = 1.85 t/mc

 $\phi' = 25^{\circ}$ 

c' = 0.00 Kg/cmq

mv = 0.030 cmq/kg

## da metri 2.20 a metri 4.20 - UNITA' GEOTECNICA "B":

limi argillosi prevalenti di colore marrone-olivastro

 $\gamma = 1.95 \text{ t/mc}$ 

 $\gamma_{sat}$ = 1.96 t/mc

 $\phi' = 22^{\circ}$ 

c' = 0.10 Kg/cmq

mv = 0.035 cmg/kg

## da metri 4.20 a metri 10.80 - UNITA' GEOTECNICA "C": sabbie e sabbie limose

 $\gamma = 1.82 \text{ t/mc}$ 

 $\gamma_{sat}$ = 1.89 t/mc

 $\phi' = 27^{\circ}$ 

c' = 0.10 Kg/cmq

mv = 0.015 cmg/kg

## da metri 10.80 a metri 15.00 - UNITA' GEOTECNICA "D": limi argillosi molto molli

 $\gamma = 1.67 \text{ t/mc}$ 

 $\gamma_{sat}$ = 1.68 t/mc

Cu = 0.20 Kg/cmq

mv = 0.030 cmq/kg

I parametri geotecnici caratteristici indicati per i vari orizzonti sono di seguito specificati:

**γ**: peso di volume naturale

mv: coefficiente di compressibilità volumetrica

Parametri di resistenza al taglio a lungo termine (espressi in termini di tensioni efficaci):

φ' angolo di resistenza a taglio efficace

c' coesione consolidata drenata

Parametri di resistenza al taglio a breve termine (espressi in termini di tensioni totali):

Cu coesione non drenata



#### 5. - SISMICITÀ

Il territorio comunale di Pisa ai sensi dell'Allegato 1 della Del. 421 del 26/05/2014 (Aggiornamento della classificazione sismica regionale) è stato confermato nella Zona sismica 3. Con l'entrata in vigore del D.M. 14 gennaio 2008 la stima della pericolosità sismica viene definita mediante un approccio "sito dipendente" e non più tramite un criterio "zona dipendente". L'azione sismica di progetto in base alla quale valutare il rispetto dei diversi stati limite presi in considerazione viene definita partendo dalla "pericolosità di base" del sito di costruzione, che è l'elemento essenziale di conoscenza per la determinazione dell'azione sismica.

#### 5.1 - analisi del terreno

Sulla base dell'indagine geofisica di tipo sismico Down Hole, effettuata nel foro di sondaggio (v. allegato n. 06) il valore della Vs<sub>equivalente</sub> minimo pari a 180 m/s dal piano di campagna; in assenza di ulteriori indicazioni di carattere strutturale si colloca il sito in esame nella **categoria di sottosuolo D** secondo la tab. 3.2. Il delle NTC 2018.

#### 5.2 - azione sismica

Le azioni sismiche di progetto si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione, che è descritta dalla probabilità che, in un fissato lasso di tempo ("periodo di riferimento" VR espresso in anni), in detto sito si verifichi un evento sismico di entità almeno pari ad un valore prefissato; la probabilità è denominata "Probabilità di eccedenza o di superamento nel periodo di riferimento" PVR. La pericolosità sismica è definita in termini di:

- Accelerazione orizzontale massima attesa ag in condizioni di campo libero su sito di riferimento rigido (categoria A), con superficie topografica orizzontale (categoriaT1);
- Ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza PVR nel periodo di riferimento VR.

Ai fini delle NTC le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento PVR, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

-ag accelerazione orizzontale massima al sito;



- -Fo valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.
- -T\*C periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale. La stima della pericolosità sismica è basata su una griglia di 10751 punti, ove viene fornita la terna di valori ag, Fo e T\*C per nove distinti periodi di ritorno TR.

#### 5.3 - stima della pericolosità sismica

Il primo passo consiste nella determinazione di ag (accelerazione orizzontale massima attesa su sito di riferimento rigido). Per tale determinazione è necessario conoscere le coordinate geografiche dell'opera da verificare; nel caso specifico le coordinate sono le seguenti:

Coordinate WGS84

latitudine: 43.712237 longitudine: 10.403403

Si determina, quindi, la maglia di riferimento in base alle tabelle dei parametri spettrali fornite dal Ministero e, sulla base della maglia interessata, si determinano i valori di riferimento del punto come media pesata dei valori nei vertici della maglia moltiplicati per le distanze dal punto.

Otteniamo i tre valori: ag (g/10), F0 e Tc\* che definiscono le forme spettrali. Il passo successivo consiste nella valutazione di a max (accelerazione massima attesa al sito)

Determiniamo, infine, i coefficienti sismici orizzontale e verticale:

Dove: **ßs** = coefficiente di riduzione dell'accelerazione massima attesa al sito; Nel caso in esame abbiamo:

| TIPO DI COSTRUZIONE            | 2          |
|--------------------------------|------------|
| VITA NOMINALE                  | VN>50 anni |
| CLASSE D'USO                   | II         |
| COEFFICIENTE D'USO             | CU 1,0     |
| VITA DI RIFERIMENTO VR = VN×CU | 50 anni    |



#### 5.4 - parametri sismici

Tipo di elaborazione: Stabilità dei pendii e fondazioni

Sito in esame:

Coordinate WGS84

latitudine: 43.712237 longitudine: 10.403403

Classe: 2 Vita nominale: 50

#### Siti di riferimento

 Sito 1
 ID: 20268
 Lat: 43,6936
 Lon: 10,3783
 Distanza: 3027,498

 Sito 2
 ID: 20269
 Lat: 43,6954
 Lon: 10,4474
 Distanza: 3986,191

 Sito 3
 ID: 20047
 Lat: 43,7453
 Lon: 10,4450
 Distanza: 4836,210

 Sito 4
 ID: 20046
 Lat: 43,7435
 Lon: 10,3757
 Distanza: 4085,059

#### Parametri sismici

Categoria sottosuolo:DCategoria topografica:T1Periodo di riferimento:50anniCoefficiente cu:1

Operatività (SLO):

 Probabilità di superamento:
 81 %

 Tr:
 30 [anni]

 ag:
 0,038 g

 Fo:
 2,575

 Tc\*:
 0,220 [s]

Danno (SLD):

 Probabilità di superamento:
 63 %

 Tr:
 50 [anni]

 ag:
 0,047 g

 Fo:
 2,548

 Tc\*:
 0,249 [s]

Salvaguardia della vita (SLV):

Probabilità di superamento: 10 %
Tr: 475 [anni]
ag: 0,118 g
Fo: 2,395



Tc\*: 0,280 [s] Prevenzione dal collasso (SLC): Probabilità di superamento: % 975 Tr: [anni] ag: 0,153 g Fo: 2,380 Tc\*: 0,283 [s] Coefficienti Sismici Stabilità dei pendii SLO: Ss: 1,800 Cc: 2,670 1,000 St: Kh: 0,014 Kv: 0,007 Amax: 0,675 Beta: 0,200 SLD: 1,800 Ss: Cc: 2,500 St: 1,000 0,017 Kh: 0,009 Kv: Amax: 0,838 Beta: 0,200 SLV: Ss: 1,800 Cc: 2,360 St: 1,000 Kh: 0,051 Kv: 0,026 Amax: 2,090 Beta: 0,240 SLC: Ss: 1,800 Cc: 2,350 St: 1,000 Kh: 0,066 Kv: 0,033 Amax: 2,697

MARCO TOSCHI G E O L O G O Beta: 0,240

#### 5.1. – FREQUENZA FONDAMENTALE DEL SOTTOSUOLO

La tecnica utilizzata per determinare la frequenza fondamentale del sottosuolo si avvale del metodo dei rapporti spettrali HVSR (Horizontal to Vertical Spectral Ratio). L'individuazione della frequenza fondamentale del sottosuolo o frequenza caratteristica di risonanza del sito, rappresenta un parametro fondamentale per evidenziare la presenza di contrasti nella velocità di propagazione delle onde di taglio (Vs) all'interno delle coperture, contrasti che sono i principali responsabili dei fenomeni amplificativi del moto sismico in superficie. L'individuazione della frequenza caratteristica di risonanza del sito permette inoltre di valutare la possibilità di insorgenza del pericoloso fenomeno della "doppia risonanza", che si manifesta quando la frequenza propria di vibrazione dei fabbricati replica (o comunque approssima) quella propria del terreno.

Il rumore sismico ambientale, presente ovunque sulla superficie terrestre, è generato dai fenomeni atmosferici (onde oceaniche, vento) e dall'attività antropica oltre che, ovviamente, dall'attività dinamica terrestre. Si chiama anche microtremore poiché riguarda oscillazioni molto più piccole di quelle indotte dai terremoti. I metodi che si basano sulla sua acquisizione si dicono passivi in quanto il rumore non è generato artificialmente, come ad esempio nella sismica attiva. Anche il debole rumore sismico infatti, che tradizionalmente costituisce la parte di segnale scartato dalla sismologia classica, contiene informazioni. Questa informazione si ritrova all'interno del rumore casuale e può essere estratta attraverso tecniche opportune. Una di queste tecniche è la teoria dei rapporti spettrali o, semplicemente, HVSR che è in grado di fornire stime affidabili delle frequenze principali dei sottosuoli, informazione di notevole importanza nell'ingegneria sismica.

Per l'analisi del microtremore sismico è stato utilizzato un tromografo digitale (Echotromo) con software di elaborazione dedicato. Dalle registrazioni del rumore sismico è stata ricavata la curva H/V utilizzando i seguenti parametri:

- Tempo di acquisizione: 60 min

Frequenza di campionamento: 200 Hz

L'analisi della curva (si rimanda all'Allegato n. 3 per maggiori dettagli) evidenzia che i picchi chiaramente identificabili e aventi fattore di amplificazione maggiore o uguale a 1.5 sono:



#### picco n.1: 15.05 Hz; picco n.2: 0.44 Hz

Dall'analisi degli spettri delle singole componenti nello spettro di Fourier il picco n.1 sembra essere il risultato di due massimi assoluti e di un massimo relativo (flesso) mentre il picco n.2 sembra non avere natura antropica e quindi probabilmente da ricondursi a passaggi litostratigrafici.

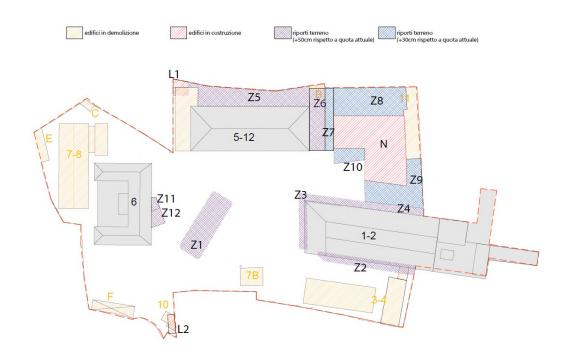
La frequenza di picco della curva H/V sperimentale principale equivale a 0.44 Hz.

#### 6. – STABILITA' NEI CONFRONTI DELLA LIQUEFAZIONE

Sulla base degli studi di microzonazione sismica condotti a supporto del Piano Strutturale Intercomunale l'area in esame si colloca nelle aree distinte in ZONA 5. Per tali zone il potenziale di liquefazione è stato valutato mediante metodi semplificati e il rischio di liquefazione è risultato MOLTO BASSO. Tuttavia ai sensi del punto § 7.11.3.4.2 del D.M. 2018, nel caso specifico il sito è possibile escludere la possibilità di liquefazione vista la distribuzione granulometrica dei terreni sul quale insiste il manufatto. Si evidenzia infatti che i depositi presentano una granulometria che esce dal fuso granulometrico critico.



#### 7. - ASPETTI IDRAULICI


Facendo riferimento alla Relazione Geologica già redatta a supporto del solo PdR e recante data 15/12/2020, si riscontra – per quanto di competenza – la richiesta di integrazione inviata dal Comune di Pisa – Ufficio Urbanistica, con lettera del 26/02/2021.

Si prende atto dell'errore di inversione nella campitura nella Tavola 5B associata al P.S.I. che porta l'area di intervento ad essere classificata come I4 (pericolosità idraulica molto elevata). Tale errore, che riguarda alcuni quadri, sarà certamente rettificato nelle opportune sedi. Ai fine del presente procedimento il quadro delle pericolosità da P.S.I. riportato in §2.5 deve pertanto considerarsi sostituto dal seguente:

| pericolosità geologica<br>pericolosità <b>BASSA</b>        | <b>G1</b> - | aree in cui i processi geomorfologici e le<br>caratteristiche litologiche, giaciturali non<br>costituiscono fattori predisponenti al<br>verificarsi di processi morfoevolutivi |
|------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pericolosità idraulica<br>pericolosità <b>MOLTO ELEVAT</b> | 14 –<br>A   | aree di fondovalle studiate che risultano inondabili al verificarsi dell'evento con portata al colmo di piena corrispondente a periodo di ritorno Tr≤ 30 anni                  |
| pericolosità sismica s<br>pericolosità <b>MEDIA</b>        | 52 –        | Zone stabili suscettibili di amplificazioni locali che non rientrano tra quelli previsti per la classe di pericolosità S.3.                                                    |

Come meglio rappresentato nell'elaborato grafico redatto dal Progettista e nelle tabelle ad esso associate (V. schema a pag. successiva), assunto un battente idraulico associato a scenari per tempo di ritorno 200 anni pari a 4,27 m s.l.m.m., è stato fatto il confronto tra i volumi di espansione che saranno ricavati in seguito alle demolizioni e di nuovo sottratti in seguito alle costruzioni. Si avranno 933 mc ricavati dalle demolizioni a fronte di 930 sottratti dalle nuove costruzioni. Sulla base di tale confronto è possibile asserire pertanto che l'intervento – nel suo complesso - non andrà a sottrare volume alla potenziale espansione delle acque e quindi non produrrà alcun aggravio delle condizioni di rischio in altre aree.





| PORZIONE    | Superficie<br>(A) | quota rilievo<br>(B) | differenza rispetto<br>a battente<br>idraulico<br>(C= 4.27m-B) | Volume<br>espansione rilievo<br>(D=AxC) | quota progetto<br>(E) | differenza rispetto<br>a battente<br>idraulico<br>(F=4.27m-E) | Volume<br>espansione<br>progetto<br>(G=AxF) | Differenza<br>(H=D-G) |
|-------------|-------------------|----------------------|----------------------------------------------------------------|-----------------------------------------|-----------------------|---------------------------------------------------------------|---------------------------------------------|-----------------------|
| 7-8 + E + C | 476 mq            | presente edificio    | presente edificio                                              | 0 mc                                    | 3,40 m                | 0,87 m                                                        | 414 mc                                      | 414 m                 |
| F           | 62 mg             | presente edificio    | presente edificio                                              | 0 mc                                    | 3,50 m                | 0,77 m                                                        | 48 mc                                       | 48 mc                 |
| 10          | 20 mg             | presente edificio    | presente edificio                                              | 0 mc                                    | 3,60 m                | 0,67 m                                                        | 13 mc                                       | 13 mc                 |
| 7B          | 55 mg             | presente edificio    | presente edificio                                              | 0 mc                                    | 3,60 m                | 0,67 m                                                        | 37 mc                                       | 37 m                  |
| 3-4         | 388 mq            | presente edificio    | presente edificio                                              | 0 mc                                    | 3,45 m                | 0,82 m                                                        | 318 mc                                      | 318 m                 |
| 5-12        | 150 mg            | presente edificio    | presente edificio                                              | 0 mc                                    | 3,95 m                | 0,32 m                                                        | 48 mc                                       | 48 mc                 |
| В           | 8 mq              | presente edificio    | presente edificio                                              | 0 mc                                    | 3,93 m                | 0,34 m                                                        | 3 mc                                        | 3 m                   |
| 11          | 140 mq            | presente edificio    | presente edificio                                              | 0 mc                                    | 3,90 m                | 0,37 m                                                        | 52 mc                                       | 52 m                  |
|             |                   |                      |                                                                |                                         |                       |                                                               |                                             | 933 m                 |

|                |                   |                      | VOLUN                                                          | II IN COSTRUZ                           | IONE                  |                                                               |                                             |                       |
|----------------|-------------------|----------------------|----------------------------------------------------------------|-----------------------------------------|-----------------------|---------------------------------------------------------------|---------------------------------------------|-----------------------|
| PORZIONE       | Superficie<br>(A) | quota rilievo<br>(B) | differenza rispetto<br>a battente<br>idraulico<br>(C= 4.27m-B) | Volume<br>espansione rilievo<br>(D=AxC) | quota progetto<br>(E) | differenza rispetto<br>a battente<br>idraulico<br>(F=4.27m-E) | Volume<br>espansione<br>progetto<br>(G=AxF) | Differenza<br>(H=D-G) |
| Edificio Nuovo | 512 mq            | 3,83 m               | 0,44 m                                                         | 225 mc                                  | presente edificio     | presente edificio                                             | 0 mc                                        | -225 m                |
| Z1             | 220 mg            | 3,55 m               | 0,72 m                                                         | 158 mc                                  | 4,05 m                | 0,22 m                                                        | 48 mc                                       | -110 m                |
| Z2             | 120 mg            | 3,50 m               | 0,77 m                                                         | 92 mc                                   | 4,00 m                | 0,27 m                                                        | 32 mc                                       | -60 m                 |
| Z3             | 130 mq            | 3,35 m               | 0,92 m                                                         | 120 mc                                  | 3,85 m                | 0,42 m                                                        | 55 mc                                       | -65 m                 |
| Z4             | 53 mg             | 3,45 m               | 0,82 m                                                         | 43 mc                                   | 3,95 m                | 0,32 m                                                        | 17 mc                                       | -27 m                 |
| Z5             | 279 mg            | 3,45 m               | 0,82 m                                                         | 229 mc                                  | 3,95 m                | 0,32 m                                                        | 89 mc                                       | -140 m                |
| L1             | 33 mg             | 3,55 m               | 0,72 m                                                         | 24 mc                                   | presente edificio     | presente edificio                                             | 0 mc                                        | -24 m                 |
| L2             | 18 mg             | 3,60 m               | 0,67 m                                                         | 12 mc                                   | presente edificio     | presente edificio                                             | 0 mc                                        | -12 m                 |
| Z6             | 132 mg            | 3,43 m               | 0,84 m                                                         | 111 mc                                  | 3,93 m                | 0,34 m                                                        | 45 mc                                       | -66 m                 |
| Z7             | 75 mq             | 3,60 m               | 0,67 m                                                         | 50 mc                                   | 3,90 m                | 0,37 m                                                        | 28 mc                                       | -23 m                 |
| Z8             | 278 mg            | 3,60 m               | 0,67 m                                                         | 186 mc                                  | 3,90 m                | 0,37 m                                                        | 103 mc                                      | -83 m                 |
| Z9             | 226 mg            | 3,60 m               | 0,67 m                                                         | 151 mc                                  | 3,90 m                | 0,37 m                                                        | 84 mc                                       | -68 m                 |
| Z10            | 56 mg             | 3,52 m               | 0,75 m                                                         | 42 mc                                   | 3,70 m                | 0,57 m                                                        | 32 mc                                       | -10 m                 |
| Z11            | 12 mg             | 3,50 m               | 0,77 m                                                         | 9 mc                                    | 4,25 m                | 0,02 m                                                        | 0 mc                                        | -9 m                  |
| Z12            | 25 mq             | 3,50 m               | 0,77 m                                                         | 19 mc                                   | 3,87 m                | 0,40 m                                                        | 10 mc                                       | -9 m                  |
|                |                   |                      |                                                                |                                         |                       |                                                               |                                             | -930 m                |

L'area di intervento presenta un tirante idraulico, per tempi di ritorno di 200 anni, compreso tra **4,24 e 4,27 metri s.l.m.m.** (procedendo da Via G. Bruno verso l'interno della proprietà). Facendo riferimento alla banca dati DTM da rilievo LIDAR della Regione Toscana, le quote del terreno nell'area di intervento oscillano mediamente intorno a 3,50 metri s.l.m.m.. L'altezza attesa della lama d'acqua risulta pertanto dell'ordine di 80 cm.

In merito ai disposti normativi di cui alla L.R. 41/2018 si specifica che per quanto riguarda i fabbricati esistenti, i cambi d'uso non riguardano parti di manufatti con piano di calpestio al di sotto del battente e quindi non in contrasto con il dettato normativo di cui all'art. 12 della stessa legge. Si rimanda alla tavola di progetto riportante le sezioni ambientali in scala 1:200.

Lucca, 4 agosto 2021

Geol. Marco Toschi



# CARTE DELLE INDAGINI (su planimetria generale - stato di progetto)




hvsr Acquisizione in sismica passiva elaborata HVSR

• masw Acquisizione spettrale MASW

cpt 2 Penetrometria statica (cone penetration test)

• S1/DH Sondaggio a carotaggio continuo/prova sismica in foro

#### MODELLO STRATIGRAFICO/GEOTECNICO



TABULATI E DIAGRAMMI DELLE PROVE PENETROMETRICHE

Geotecnica Geofisica

GEOLUK s.r.l.

GEOGNOSTICA & GEOFISICA

Monitoraggio idrogeologico

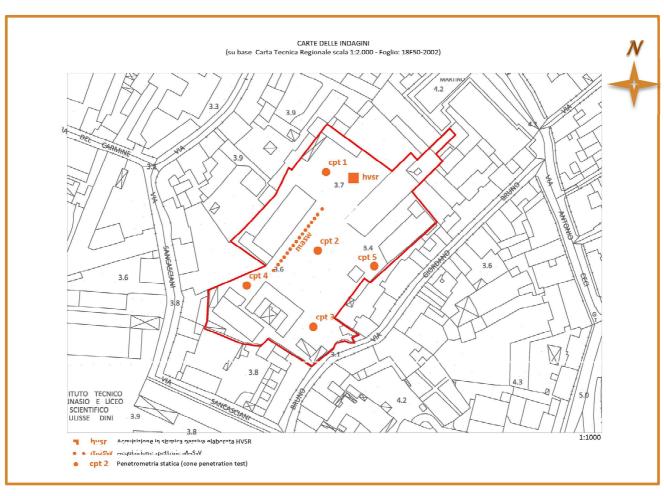
Indagini Ambientali

**Committenza:** Geol. Marco Toschi **località:** ex cas. Curtatone Montanara - Pisa

data esecuzione indagine: 07/12/2020 tipologia di indagine: n.5 CPT

**strumentazione:** Pagani TG 63/200 **software elaborazione:** WinCpt2

data produzione elaborati: 14/12/2019




SEDE OPERATIVA E SEDE LEGALE: VIA PESCIATINA, 1560/A - 55100 LUCCA

R.E.A. LUCCA N. 194371 - CAPITALE SOCIALE € 10.000,00 I.V.

#### **CARTOGRAFIA**





### LEGENDA VALORI DI RESISTENZA

Riferimento: 121-2020

#### Strumento utilizzato:

#### **PENETROMETRO STATICO tipo:**

#### Caratteristiche:

- punta conica meccanica  $\varnothing$  35.7 mm, angolo di apertura  $\alpha$ = 60 ° -( area punta Ap = 10 cm<sup>2</sup>)
- manicotto laterale di attrito tipo 'Begemann' (Ø 35.7 mm h 133 mm sup. lat. Am. = 150 cm²)
- velocità di avanzamento costante  $V = 2 \text{ cm} / \text{sec} (\pm 0.5 \text{ cm} / \text{sec})$
- spinta max nominale dello strumento Smax variabile a seconda del tipo
- costante di trasformazione (lett.⇒spinta ) Ct = spinta (Kg) / LETTURA al manometro
- fase 1 resistenza alla punta  $gc (Kg / cm^2) = L1 \times Ct / 10$
- fase 2 resistenza laterale locale fs ( Kg / cm<sup>2</sup>) = (L2 L1) x Ct / 150
- fase 3 resistenza totale Rt ( Kg ) = (Lt) x Ct
  - qc / fs = rapporto Begemann
- L1. punta = lettura di campagna durante l' infissione della sola punta (fase 1)
- L2. totale = lettura di campagna relativa all'infissione di punta e manicotto (fase 2)
- Lt. aste = lettura di campagna relativa all'infissione delle aste esterne (fase 3)
- N.B.: la spinta S (Kg), corrispondente a ciascuna fase, si ottiene moltiplicando la corrispondente lettura di campagna L per la costante di trasformazione Ct.
- N.B.: causa la distanza intercorrente (20 cm circa) fra il manicotto laterale e la punta conica del penetrometro, la resistenza laterale locale fs viene computata 20 cm sopra la punta.

#### **CONVERSIONI**

```
1 kN (kiloNewton) = 1000 N \approx 100 kg = 0,1 t - 1MN (megaNewton) = 1000 kN = 1000000 N \approx 100 t
```

- 1 kPa ( kiloPascal ) = 1 kN/m<sup>2</sup> = 0,001 MN/m<sup>2</sup> = 0,001 MPa  $\approx 0,1 \text{ t/m}^2 = 0,01 \text{ kg/cm}^2$
- 1 MPa ( MegaPascal ) = 1 MN/ $m^2$  = 1000 kN/ $m^2$  = 1000 kPa  $\approx$  100 t/ $m^2$  = 10 kg/cm<sup>2</sup>

 $kg/cm^2 = 10 t/m^2 \approx 100 kN/m^2 = 100 kPa = 0,1 MN/m^2 = 0,1 Mpa$ 

 $1 t = 1000 kg \approx 10 kN$ 

#### LEGENDA VALUTAZIONI LITOLOGICHE

Riferimento: 121-2020

Valutazioni in base al rapporto: F = (qc / fs)

(Begemann 1965 - Raccomandazioni A.G.I. 1977)

valide in via approssimata per terreni immersi in falda:

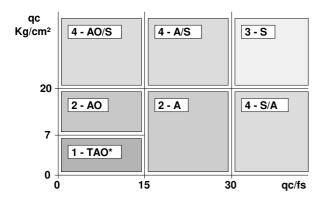
| F = qc / r | fs NATURA LITOLOGICA                                                           | PROPRIETA'                      |
|------------|--------------------------------------------------------------------------------|---------------------------------|
|            | TORBE ED ARGILLE ORGANICHE<br>LIMI ED ARGILLE<br>LIMI SABBIOSI E SABBIE LIMOSE | COESIVE<br>COESIVE<br>GRANULARI |
| F > 60     | SABBIE E SABBIE CON GHIAIA                                                     | GRANULARI                       |

Vengono inoltre riportate le valutazioni stratigrafiche fornite da Schmertmann (1978), ricavabili in base ai valori di qc e di FR = (fs / qc) %

- AO = argilla organica e terreni misti
- Att = argilla (inorganica) molto tenera
- At = argilla (inorganica) tenera
- Am = argilla (inorganica) di media consistenza
- Ac = argilla (inorganica) consistente
- Acc = argilla (inorganica) molto consistente
- ASL = argilla sabbiosa e limosa
- SAL = sabbia e limo / sabbia e limo argilloso
- Ss = sabbia sciolta
- Sm = sabbia mediamente addensata
- Sd = sabbia densa o cementata
- SC = sabbia con molti fossili, calcareniti

Secondo Schmertmann il valore della resistenza laterale da usarsi, dovrebbe essere pari a:

- $1/3 \pm 1/2$  di quello misurato , per depositi sabbiosi
- quello misurato (inalterato), per depositi coesivi


## LEGENDA PARAMETRI GEOTECNICI

SCELTE LITOLOGICHE (validità orientativa)

Le scelte litologiche vengono effettuate in base al rapporto qc / fs (Begemann 1965 -Raccomandazioni A.G.I. 1977), prevedendo altresì la possibilità di casi dubbi :

 $qc \le 20 \text{ kg/cm}^2$ : possibili terreni COESIVI anche se (qc / fs) > 30

qc ≥ 20 kg/cm<sup>2</sup>: possibili terreni GRANULARI anche se (qc / fs) < 30



#### NATURA LITOLOGICA

1 - COESIVA (TORBOSA) ALTA COMPRIMIBILITA'

Riferimento: 121-2020

- 2 COESIVA ÎN GENERÉ
- 3 GRANULARE
- 4 COESIVA / GRANULARE

PARAMETRI GEOTECNICI (validità orientativa) - simboli - correlazioni - bibliografia

- $\gamma'$  = peso dell' unità di volume (efficace) del terreno [correlazioni :  $\gamma'$  qc natura]
  - (Terzaghi & Peck 1967 -Bowles 1982)
- $\sigma'vo$  = tensione verticale geostatica (efficace) del terreno (valutata in base ai valori di $\gamma'$ )
- Cu = coesione non drenata (terreni coesivi ) [ correlazioni : Cu qc ]
- OCR = grado di sovra consolidazione (terreni coesivi ) [ correlazioni : OCR Cu  $\sigma$ 'vo ]
  - (Ladd et al. 1972 / 1974 / 1977 Lancellotta 1983)
- Eu = modulo di deformazione non drenato (terr.coes.) [ correl. : Eu Cu OCR Ip Ip= indice plastico] Eu50 Eu25 corrispondono rispettivamente ad un grado di mobilitazione dello sforzo deviatorico corrisp. al 50-25% (Duncan & Buchigani 1976)
- E' = modulo di deformazione drenato (terreni granulari) [ correlazioni : E' qc ]
  E'50 E'25 corrispondono rispettivamente ad un grado di mobilitazione dello sforzo deviatorico corrisp. al 50-25% (coefficiente di sicurezza F = 2 4 rispettivamente)
  (Schmertmann 1970 / 1978 Jamiolkowski et al. 1983)
- Mo = modulo di deformazione edometrico (terreni coesivi e granulari) [ correl. : Mo qc natura] (Sanglerat 1972 Mitchell & Gardner 1975 Ricceri et al. 1974 Holden 1973)
- Dr = densità relativa (terreni granulari N. C. normalmente consolidati)
  - [ correlazioni : Dr qc σ'vo] (Schmertmann 1976 )
- Ø' = angolo di attrito interno efficace (terreni granulari N.C.) [ correl.: Ø' Dr qc σ'vo] (Schmertmann 1978 Durgunoglu & Mitchell 1975 Meyerhof 1956 / 1976)
  - Ø1s (Schmertmann) sabbia fine uniforme Ø2s sabbia media uniforme/ fine ben gradata Ø3s sabbia grossa uniforme/ media ben gradata
    - Ø4s sabbia-ghiaia poco limosa/ ghiaietto uniorme
  - Ødm ( Durgunoglu & Mitchell ) sabbie N.C. Ømy (Meyerhof) sabbie limose
- Amax = accelerazione al suolo che può causare liquefazione ( terreni granulari )
  - ( g = acc.gravità)(Seed & Idriss 1971 Sirio 1976 ) [ correlazioni : (Amax/g) Dr]

Riferimento: 121-2020 CPT 1

## PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

2.0105-PG076

- committente : Geol. Marco Toschi - data : 07/12/2020 - lavoro: indagine geognostica - quota inizio: -0.6m da p.c.

- falda : ex caserma Curtatone Montanara - Pisa - località: - assist. cantiere : - data di emissione :

14/12/2020

- note : riporto superato in DPSH; falda -1.18

| prf  | L1   | L2   | qc                 | fs                 | qc/fs | prf   | L1   | L2   | qc                 | fs                 | qc/fs        |
|------|------|------|--------------------|--------------------|-------|-------|------|------|--------------------|--------------------|--------------|
| m    | -    | -    | Kg/cm <sup>2</sup> | Kg/cm <sup>2</sup> | -     | m     | -    | -    | Kg/cm <sup>2</sup> | Kg/cm <sup>2</sup> | -            |
| 0,20 |      |      |                    |                    |       | 7,80  | 56,0 | 79,0 | 56.0               | 1,73               | 32,0         |
| 0,20 |      |      |                    |                    |       | 8,00  | 36,0 | 62,0 | 36,0               | 1,73               | 22,0         |
| 0,40 |      |      |                    |                    |       | 8,20  | 34,0 | 58,0 | 36,0               | 1,60               | 22,0<br>28,0 |
|      | 7,0  |      |                    |                    |       |       |      |      |                    |                    |              |
| 0,80 |      | 10.0 | 7,0                | 0,27               | 26,0  | 8,40  | 31,0 | 49,0 | 31,0               | 1,33               | 23,0         |
| 1,00 | 14,0 | 18,0 | 14,0               | 0,67               | 21,0  | 8,60  | 30,0 | 50,0 | 30,0               | 0,93               | 32,0         |
| 1,20 | 15,0 | 25,0 | 15,0               | 0,73               | 20,0  | 8,80  | 36,0 | 50,0 | 36,0               | 1,73               | 21,0         |
| 1,40 | 15,0 | 26,0 | 15,0               | 0,33               | 45,0  | 9,00  | 38,0 | 64,0 | 38,0               | 1,07               | 36,0         |
| 1,60 | 16,0 | 21,0 | 16,0               | 0,27               | 60,0  | 9,20  | 55,0 | 71,0 | 55,0               | 1,53               | 36,0         |
| 1,80 | 16,0 | 20,0 | 16,0               | 0,53               | 30,0  | 9,40  | 38,0 | 61,0 | 38,0               | 0,93               | 41,0         |
| 2,00 | 19,0 | 27,0 | 19,0               | 0,93               | 20,0  | 9,60  | 23,0 | 37,0 | 23,0               | 1,47               | 16,0         |
| 2,20 | 12,0 | 26,0 | 12,0               | 0,67               | 18,0  | 9,80  | 27,0 | 49,0 | 27,0               | 1,47               | 18,0         |
| 2,40 | 8,0  | 18,0 | 8,0                | 0,40               | 20,0  | 10,00 | 26,0 | 48,0 | 26,0               | 1,20               | 22,0         |
| 2,60 | 8,0  | 14,0 | 8,0                | 0,33               | 24,0  | 10,20 | 68,0 | 86,0 | 68,0               | 1,73               | 39,0         |
| 2,80 | 8,0  | 13,0 | 8,0                | 0,47               | 17,0  | 10,40 | 68,0 | 94,0 | 68,0               | 1,80               | 38,0         |
| 3,00 | 7,0  | 14,0 | 7,0                | 0,33               | 21,0  | 10,60 | 48,0 | 75,0 | 48,0               | 1,33               | 36,0         |
| 3,20 | 10,0 | 15,0 | 10,0               | 0,40               | 25,0  | 10,80 | 56,0 | 76,0 | 56,0               | 2,40               | 23,0         |
| 3,40 | 7,0  | 13,0 | 7,0                | 0,33               | 21,0  | 11,00 | 9,0  | 45,0 | 9,0                | 0,53               | 17,0         |
| 3,60 | 6,0  | 11,0 | 6,0                | 0,33               | 18,0  | 11,20 | 7,0  | 15,0 | 7,0                | 0,53               | 13,0         |
| 3,80 | 22,0 | 27,0 | 22,0               | 0,67               | 33,0  | 11,40 | 7,0  | 15,0 | 7,0                | 0,33               | 21,0         |
| 4,00 | 29,0 | 39,0 | 29,0               | 0,67               | 43,0  | 11,60 | 8,0  | 13,0 | 8,0                | 0,27               | 30,0         |
| 4,20 | 20,0 | 30,0 | 20,0               | 0,87               | 23,0  | 11,80 | 9,0  | 13,0 | 9,0                | 0,13               | 67,0         |
| 4,40 | 20,0 | 33,0 | 20,0               | 1,47               | 14,0  | 12,00 | 10,0 | 12,0 | 10,0               | 0,20               | 50,0         |
| 4,60 | 34,0 | 56,0 | 34,0               | 0,73               | 46,0  | 12,20 | 9,0  | 12,0 | 9,0                | 0,20               | 45,0         |
| 4,80 | 35,0 | 46,0 | 35,0               | 0,93               | 37,0  | 12,40 | 9,0  | 12,0 | 9,0                | 0,33               | 27,0         |
| 5,00 | 14,0 | 28,0 | 14,0               | 1,93               | 7,0   | 12,60 | 9,0  | 14,0 | 9,0                | 0,33               | 27,0         |
| 5,20 | 20,0 | 49,0 | 20,0               | 1,47               | 14,0  | 12,80 | 9,0  | 14,0 | 9,0                | 0,33               | 27,0         |
| 5,40 | 11,0 | 33,0 | 11,0               | 0,20               | 55,0  | 13,00 | 8,0  | 13,0 | 8,0                | 0,33               | 24,0         |
| 5,60 | 19,0 | 22,0 | 19,0               | 0,27               | 71,0  | 13,20 | 8,0  | 13,0 | 8,0                | 0,33               | 24,0         |
| 5,80 | 47,0 | 51,0 | 47,0               | 1,93               | 24,0  | 13,40 | 9,0  | 14,0 | 9,0                | 0,33               | 27,0         |
| 6,00 | 40,0 | 69,0 | 40,0               | 1,00               | 40,0  | 13,60 | 9,0  | 14,0 | 9,0                | 0,33               | 27,0         |
| 6,20 | 20,0 | 35,0 | 20,0               | 1,33               | 15,0  | 13,80 | 9,0  | 14,0 | 9,0                | 0,47               | 19,0         |
| 6,40 | 16,0 | 36,0 | 16,0               | 1,00               | 16,0  | 14,00 | 14,0 | 21,0 | 14,0               | 0,47               | 30,0         |
| 6,60 | 49,0 | 64,0 | 49,0               | 1,47               | 33,0  | 14,20 | 13,0 | 20,0 | 13,0               | 0,40               | 32,0         |
| 6,80 | 44,0 | 66,0 | 44,0               | 1,67               | 26,0  | 14,40 | 9,0  | 15,0 | 9,0                | 0,27               | 34,0         |
| 7,00 | 40,0 | 65,0 | 40,0               | 1,60               | 25,0  | 14,60 | 9,0  | 13,0 | 9,0                | 0,13               | 67,0         |
| 7,20 | 56,0 | 80,0 | 56,0               | 1,73               | 32,0  | 14,80 | 13,0 | 15,0 | 13,0               | 0,40               | 32,0         |
| 7,40 | 60,0 | 86,0 | 60,0               | 1,93               | 31,0  | 15,00 | 8,0  | 14,0 | 8,0                |                    |              |
| 7,60 | 20,0 | 49,0 | 20,0               | 1,53               | 13,0  | 1     |      |      |                    |                    |              |

<sup>-</sup> PENETROMETRO STATICO tipo da 20 t - (con anello allargatore) - - COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s - punta meccanica tipo Begemann Ø = 35.7 mm (area punta 10 cm² - apertura 60°)

<sup>-</sup> manicotto laterale (superficie 150 cm²)

Riferimento: 121-2020 CPT 2

## PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

2.0105-PG076

- committente : Geol. Marco Toschi - data : 07/12/2020 - lavoro: indagine geognostica - quota inizio: -0.4m da p.c. - falda :

ex caserma Curtatone Montanara - Pisa - località: - assist. cantiere : - data di emissione :

14/12/2020

- note : riporto superato in DPSH; falda -1.18

| - HOLE . | '    | iporto supi | Cialo III Di       | ori, iaiuc         | 1-1.10 |       |      |       |                    |                    |       |
|----------|------|-------------|--------------------|--------------------|--------|-------|------|-------|--------------------|--------------------|-------|
| prf      | f L1 | L2          | qc                 | fs                 | qc/fs  | prf   | L1   | L2    | qc                 | fs                 | qc/fs |
| m        | 1 -  | -           | Kg/cm <sup>2</sup> | Kg/cm <sup>2</sup> | -      | m     | -    | -     | Kg/cm <sup>2</sup> | Kg/cm <sup>2</sup> | -     |
| 0,20     | )    |             |                    |                    |        | 7,80  | 40,0 | 64,0  | 40,0               | 1,80               | 22,0  |
| 0,40     |      |             |                    | 0,27               |        | 8,00  | 47,0 | 74,0  | 47,0               | 1,60               | 29,0  |
| 0,60     |      | 12,0        | 8,0                | 0,60               | 13,0   | 8,20  | 36,0 | 60,0  | 36,0               | 1,07               | 34,0  |
| 0,80     |      | 14,0        | 5,0                | 0,47               | 11,0   | 8,40  | 35,0 | 51,0  | 35,0               | 1,00               | 35,0  |
| 1,00     |      | 12,0        | 5,0                | 0,40               | 12,0   | 8,60  | 60,0 | 75,0  | 60,0               | 1,07               | 56,0  |
| 1,20     |      | 17,0        | 11,0               | 0,53               | 21,0   | 8,80  | 54,0 | 70,0  | 54,0               | 2,53               | 21,0  |
| 1,40     | 16,0 | 24,0        | 16,0               | 0,67               | 24,0   | 9,00  | 30,0 | 68,0  | 30,0               | 1,53               | 20,0  |
| 1,60     |      | 25,0        | 15,0               | 0,87               | 17,0   | 9,20  | 36,0 | 59,0  | 36,0               | 1,53               | 23,0  |
| 1,80     |      | 27,0        | 14,0               | 0,87               | 16,0   | 9,40  | 73,0 | 96,0  | 73,0               | 2,93               | 25,0  |
| 2,00     |      | 27,0        | 14,0               | 0,80               | 17,0   | 9,60  | 75,0 | 119,0 | 75,0               | 2,67               | 28,0  |
| 2,20     | 12,0 | 24,0        | 12,0               | 0,67               | 18,0   | 9,80  | 64,0 | 104,0 | 64,0               | 2,80               | 23,0  |
| 2,40     |      | 20,0        | 10,0               | 0,53               | 19,0   | 10,00 | 34,0 | 76,0  | 34,0               | 2,13               | 16,0  |
| 2,60     |      | 18,0        | 10,0               | 0,53               | 19,0   | 10,20 | 48,0 | 80,0  | 48,0               | 1,60               | 30,0  |
| 2,80     | 7,0  | 15,0        | 7,0                | 0,40               | 17,0   | 10,40 | 45,0 | 69,0  | 45,0               | 1,53               | 29,0  |
| 3,00     |      | 15,0        | 9,0                | 0,53               | 17,0   | 10,60 | 68,0 | 91,0  | 68,0               | 3,07               | 22,0  |
| 3,20     |      | 18,0        | 10,0               | 0,47               | 21,0   | 10,80 | 13,0 | 59,0  | 13,0               | 1,13               | 11,0  |
| 3,40     |      | 14,0        | 7,0                | 0,40               | 17,0   | 11,00 | 7,0  | 24,0  | 7,0                | 0,33               | 21,0  |
| 3,60     | 9,0  | 15,0        | 9,0                | 0,47               | 19,0   | 11,20 | 5,0  | 10,0  | 5,0                | 0,33               | 15,0  |
| 3,80     |      | 20,0        | 13,0               | 1,27               | 10,0   | 11,40 | 5,0  | 10,0  | 5,0                | 0,27               | 19,0  |
| 4,00     |      | 63,0        | 44,0               | 0,73               | 60,0   | 11,60 | 6,0  | 10,0  | 6,0                | 0,33               | 18,0  |
| 4,20     | 23,0 | 34,0        | 23,0               | 0,73               | 31,0   | 11,80 | 5,0  | 10,0  | 5,0                | 0,33               | 15,0  |
| 4,40     | 49,0 | 60,0        | 49,0               | 0,93               | 52,0   | 12,00 | 5,0  | 10,0  | 5,0                | 0,33               | 15,0  |
| 4,60     |      | 85,0        | 71,0               | 1,47               | 48,0   | 12,20 | 5,0  | 10,0  | 5,0                | 0,33               | 15,0  |
| 4,80     |      | 58,0        | 36,0               | 1,47               | 25,0   | 12,40 | 5,0  | 10,0  | 5,0                | 0,33               | 15,0  |
| 5,00     |      | 50,0        | 28,0               | 1,07               | 26,0   | 12,60 | 5,0  | 10,0  | 5,0                | 0,33               | 15,0  |
| 5,20     |      | 46,0        | 30,0               | 1,47               | 20,0   | 12,80 | 5,0  | 10,0  | 5,0                | 0,33               | 15,0  |
| 5,40     |      | 62,0        | 40,0               | 1,20               | 33,0   | 13,00 | 5,0  | 10,0  | 5,0                | 0,33               | 15,0  |
| 5,60     |      | 33,0        | 15,0               | 0,93               | 16,0   | 13,20 | 6,0  | 11,0  | 6,0                | 0,33               | 18,0  |
| 5,80     |      | 42,0        | 28,0               | 1,47               | 19,0   | 13,40 | 6,0  | 11,0  | 6,0                | 0,33               | 18,0  |
| 6,00     |      | 33,0        | 11,0               | 0,80               | 14,0   | 13,60 | 6,0  | 11,0  | 6,0                | 0,33               | 18,0  |
| 6,20     |      | 50,0        | 38,0               | 1,87               | 20,0   | 13,80 | 6,0  | 11,0  | 6,0                | 0,33               | 18,0  |
| 6,40     |      | 64,0        | 36,0               | 1,47               | 25,0   | 14,00 | 6,0  | 11,0  | 6,0                | 0,27               | 22,0  |
| 6,60     |      | 53,0        | 31,0               | 1,00               | 31,0   | 14,20 | 7,0  | 11,0  | 7,0                | 0,27               | 26,0  |
| 6,80     |      | 54,0        | 39,0               | 1,80               | 22,0   | 14,40 | 7,0  | 11,0  | 7,0                | 0,20               | 35,0  |
| 7,00     | 36,0 | 63,0        | 36,0               | 1,20               | 30,0   | 14,60 | 8,0  | 11,0  | 8,0                | 0,13               | 60,0  |
| 7,20     |      | 51,0        | 33,0               | 1,60               | 21,0   | 14,80 | 9,0  | 11,0  | 9,0                | 0,20               | 45,0  |
| 7,40     |      | 44,0        | 20,0               | 1,40               | 14,0   | 15,00 | 8,0  | 11,0  | 8,0                |                    |       |
| 7,60     | 34,0 | 55,0        | 34,0               | 1,60               | 21,0   |       |      |       |                    |                    |       |
|          |      |             |                    |                    |        |       |      |       |                    |                    |       |

<sup>-</sup> PENETROMETRO STATICO tipo da 20 t - (con anello allargatore) - - COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s - punta meccanica tipo Begemann Ø = 35.7 mm (area punta 10 cm² - apertura 60°)

<sup>-</sup> manicotto laterale (superficie 150 cm²)

Riferimento: 121-2020 PROVA PENETROMETRICA STATICA CPT 3

## LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

2.0105-PG076

- committente : Geol. Marco Toschi - data : 07/12/2020 - lavoro: - quota inizio:

indagine geognostica p.c. ex caserma Curtatone Montanara - Pisa - falda : - località:

- assist. cantiere : - data di emissione :

14/12/2020

- note : falda -1.18

| prf  | L1   | L2   | qc                 | fs                 | qc/fs | prf   | L1   | L2    | qc                 | fs                 | qc/fs |
|------|------|------|--------------------|--------------------|-------|-------|------|-------|--------------------|--------------------|-------|
| m    | -    | -    | Kg/cm <sup>2</sup> | Kg/cm <sup>2</sup> | -     | m     | -    | -     | Kg/cm <sup>2</sup> | Kg/cm <sup>2</sup> | -     |
| 0,20 | 3.0  |      | 3,0                | 0.33               | 9,0   | 7,80  | 46.0 | 74,0  | 46.0               | 1,53               | 30.0  |
| 0,40 | 3.0  | 8.0  | 3,0                | 0,47               | 6,0   | 8,00  | 41,0 | 64,0  | 41,0               | 1,73               | 24,0  |
| 0,60 | 5,0  | 12,0 | 5,0                | 0,40               | 12,0  | 8,20  | 36,0 | 62,0  | 36.0               | 1,53               | 23,0  |
| 0,80 | 7,0  | 13,0 | 7,0                | 0,20               | 35,0  | 8,40  | 35,0 | 58,0  | 35.0               | 1,27               | 28,0  |
| 1,00 | 10,0 | 13,0 | 10,0               | 0,53               | 19,0  | 8,60  | 32,0 | 51,0  | 32,0               | 0,40               | 80.0  |
| 1,20 | 19,0 | 27,0 | 19,0               | 0,93               | 20,0  | 8,80  | 60,0 | 66,0  | 60,0               | 0,53               | 112,0 |
| 1,40 | 19,0 | 33,0 | 19,0               | 0,87               | 22,0  | 9,00  | 73,0 | 81,0  | 73,0               | 0,93               | 78,0  |
| 1,60 | 18,0 | 31,0 | 18,0               | 0,53               | 34,0  | 9,20  | 76,0 | 90,0  | 76.0               | 2,40               | 32,0  |
| 1,80 | 17,0 | 25,0 | 17,0               | 0,73               | 23,0  | 9,40  | 64,0 | 100,0 | 64,0               | 1,07               | 60,0  |
| 2,00 | 16,0 | 27,0 | 16,0               | 0,67               | 24,0  | 9,60  | 39,0 | 55,0  | 39,0               | 1,60               | 24,0  |
| 2,20 | 13,0 | 23,0 | 13,0               | 0,47               | 28,0  | 9,80  | 37,0 | 61,0  | 37,0               | 1,73               | 21,0  |
| 2,40 | 8,0  | 15,0 | 8,0                | 0,33               | 24,0  | 10,00 | 32,0 | 58,0  | 32,0               | 0,53               | 60.0  |
| 2,60 | 5,0  | 10,0 | 5,0                | 0,27               | 19,0  | 10,20 | 64,0 | 72,0  | 64,0               | 1,07               | 60,0  |
| 2,80 | 6,0  | 10,0 | 6,0                | 0,27               | 22,0  | 10,40 | 62,0 | 78,0  | 62,0               | 1,67               | 37,0  |
| 3,00 | 8,0  | 12,0 | 8,0                | 0,67               | 12,0  | 10,60 | 44,0 | 69,0  | 44,0               | 1,60               | 27,0  |
| 3,20 | 7,0  | 17,0 | 7,0                | 0,40               | 17,0  | 10,80 | 38,0 | 62,0  | 38,0               | 1,47               | 26,0  |
| 3,40 | 7,0  | 13,0 | 7,0                | 0,80               | 9,0   | 11,00 | 30,0 | 52,0  | 30,0               | 2,33               | 13,0  |
| 3,60 | 10,0 | 22,0 | 10,0               | 0,73               | 14,0  | 11,20 | 6,0  | 41,0  | 6,0                | 0,33               | 18,0  |
| 3,80 | 39,0 | 50,0 | 39,0               | 1,73               | 22,0  | 11,40 | 5,0  | 10,0  | 5,0                | 0,40               | 12,0  |
| 4,00 | 20,0 | 46,0 | 20,0               | 0,87               | 23,0  | 11,60 | 5,0  | 11,0  | 5,0                | 0,47               | 11,0  |
| 4,20 | 52,0 | 65,0 | 52,0               | 0,73               | 71,0  | 11,80 | 5,0  | 12,0  | 5,0                | 0,27               | 19,0  |
| 4,40 | 50,0 | 61,0 | 50,0               | 1,53               | 33,0  | 12,00 | 6,0  | 10,0  | 6,0                | 0,40               | 15,0  |
| 4,60 | 27,0 | 50,0 | 27,0               | 1,27               | 21,0  | 12,20 | 5,0  | 11,0  | 5,0                | 0,27               | 19,0  |
| 4,80 | 28,0 | 47,0 | 28,0               | 1,33               | 21,0  | 12,40 | 6,0  | 10,0  | 6,0                | 0,20               | 30,0  |
| 5,00 | 36,0 | 56,0 | 36,0               | 1,00               | 36,0  | 12,60 | 7,0  | 10,0  | 7,0                | 0,33               | 21,0  |
| 5,20 | 26,0 | 41,0 | 26,0               | 1,40               | 19,0  | 12,80 | 5,0  | 10,0  | 5,0                | 0,40               | 12,0  |
| 5,40 | 15,0 | 36,0 | 15,0               | 1,13               | 13,0  | 13,00 | 6,0  | 12,0  | 6,0                | 0,40               | 15,0  |
| 5,60 | 16,0 | 33,0 | 16,0               | 0,67               | 24,0  | 13,20 | 7,0  | 13,0  | 7,0                | 0,27               | 26,0  |
| 5,80 | 17,0 | 27,0 | 17,0               | 0,67               | 25,0  | 13,40 | 8,0  | 12,0  | 8,0                | 0,40               | 20,0  |
| 6,00 | 36,0 | 46,0 | 36,0               | 1,20               | 30,0  | 13,60 | 7,0  | 13,0  | 7,0                | 0,33               | 21,0  |
| 6,20 | 32,0 | 50,0 | 32,0               | 1,07               | 30,0  | 13,80 | 9,0  | 14,0  | 9,0                | 0,27               | 34,0  |
| 6,40 | 36,0 | 52,0 | 36,0               | 0,87               | 42,0  | 14,00 | 9,0  | 13,0  | 9,0                | 0,40               | 22,0  |
| 6,60 | 35,0 | 48,0 | 35,0               | 0,73               | 48,0  | 14,20 | 8,0  | 14,0  | 8,0                | 0,20               | 40,0  |
| 6,80 | 38,0 | 49,0 | 38,0               | 1,20               | 32,0  | 14,40 | 9,0  | 12,0  | 9,0                | 0,13               | 67,0  |
| 7,00 | 28,0 | 46,0 | 28,0               | 0,73               | 38,0  | 14,60 | 10,0 | 12,0  | 10,0               | 0,07               | 150,0 |
| 7,20 | 33,0 | 44,0 | 33,0               | 1,47               | 22,0  | 14,80 | 9,0  | 10,0  | 9,0                | 0,20               | 45,0  |
| 7,40 | 40,0 | 62,0 | 40,0               | 1,93               | 21,0  | 15,00 | 8,0  | 11,0  | 8,0                |                    |       |
| 7,60 | 40,0 | 69,0 | 40,0               | 1,87               | 21,0  |       |      |       |                    |                    |       |

<sup>-</sup> PENETROMETRO STATICO tipo da 20 t - (con anello allargatore) - - COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s - punta meccanica tipo Begemann Ø = 35.7 mm (area punta 10 cm² - apertura 60°)

<sup>-</sup> manicotto laterale (superficie 150 cm²)

Riferimento: 121-2020 CPT 4

## PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

2.0105-PG076

- committente : Geol. Marco Toschi - data : 07/12/2020 - lavoro: indagine geognostica - quota inizio: -0.4m da p.c.

- falda : ex caserma Curtatone Montanara - Pisa - località: - assist. cantiere :

- data di emissione : 14/12/2020

- note : riporto superato in DPSH; falda -1.18

| m         -         Kg/cm²         Kg/cm²         -         m         -         -         Kg/cm²         Kg/cm² |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 0,20          7,80       59,0       78,0       59,0       1,2         0,40         0,60       54,0       72,0       54,0       0,8         0,60       16,0       25,0       16,0       0,47       34,0       8,20       16,0       29,0       16,0       1,1         0,80       17,0       24,0       17,0       0,40       42,0       8,40       32,0       49,0       32,0       1,2         1,00       15,0       21,0       15,0       0,87       17,0       8,60       32,0       51,0       32,0       1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| 0,40       0,60     54,0     72,0     54,0     0,8       0,60     16,0     25,0     16,0     0,47     34,0     8,20     16,0     29,0     16,0     1,1       0,80     17,0     24,0     17,0     0,40     42,0     8,40     32,0     49,0     32,0     1,2       1,00     15,0     21,0     15,0     0,87     17,0     8,60     32,0     51,0     32,0     1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| 0,40       0,60     54,0     72,0     54,0     0,8       0,60     16,0     25,0     16,0     0,47     34,0     8,20     16,0     29,0     16,0     1,1       0,80     17,0     24,0     17,0     0,40     42,0     8,40     32,0     49,0     32,0     1,2       1,00     15,0     21,0     15,0     0,87     17,0     8,60     32,0     51,0     32,0     1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| 0,60 16,0 25,0 16,0 0,47 34,0 8,20 16,0 29,0 16,0 1,1 0,80 17,0 24,0 17,0 0,40 42,0 8,40 32,0 49,0 32,0 1,2 1,00 15,0 21,0 15,0 0,87 17,0 8,60 32,0 51,0 32,0 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0,80 17,0 24,0 17,0 0,40 42,0 8,40 32,0 49,0 32,0 1,2<br><b>1,00</b> 15,0 21,0 15,0 0,87 17,0 8,60 32,0 51,0 32,0 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| <b>1,00</b> 15,0 21,0 15,0 0,87 17,0 8,60 32,0 51,0 32,0 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| 1,20 14,0 27,0 14,0 0,67 21,0 8,80 34,0 50,0 34,0 1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 1,40 19,0 29,0 19,0 0,73 26,0 <b>9,00</b> 72,0 90,0 72,0 1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| 1,60 16,0 27,0 16,0 0,33 48,0 9,20 28,0 52,0 28,0 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 1,80 5,0 10,0 5,0 0,27 19,0 9,40 23,0 39,0 23,0 1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| <b>2,00</b> 6,0 10,0 6,0 0,20 30,0 9,60 32,0 56,0 32,0 2,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 13,0 |
| 2,20 6,0 9,0 6,0 0,33 18,0 9,80 30,0 67,0 30,0 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| 2,40 5,0 10,0 5,0 0,33 15,0 <b>10,00</b> 36,0 59,0 36,0 2,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| 2,60 7,0 12,0 7,0 0,27 26,0 10,20 68,0 100,0 68,0 1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 2,80 8,0 12,0 8,0 0,33 24,0 10,40 61,0 80,0 61,0 1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| <b>3,00</b> 6,0 11,0 6,0 0,40 15,0 10,60 75,0 94,0 75,0 1,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| 3,20 8,0 14,0 8,0 0,33 24,0 10,80 40,0 62,0 40,0 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 3,40 8,0 13,0 8,0 0,27 30,0 <b>11,00</b> 6,0 29,0 6,0 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| 3,60 11,0 15,0 11,0 0,80 14,0 11,20 6,0 10,0 6,0 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 3,80 20,0 32,0 20,0 0,40 50,0 11,40 5,0 10,0 5,0 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| <b>4,00</b> 17,0 23,0 17,0 0,87 20,0 11,60 5,0 12,0 5,0 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| 4,20 20,0 33,0 20,0 0,13 150,0 11,80 4,0 12,0 4,0 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 4,40 19,0 21,0 19,0 1,07 18,0 <b>12,00</b> 4,0 12,0 4,0 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| 4,60 11,0 27,0 11,0 1,07 10,0 12,20 4,0 11,0 4,0 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 4,80 17,0 33,0 17,0 1,20 14,0 12,40 4,0 12,0 4,0 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| <b>5,00</b> 17,0 35,0 17,0 1,60 11,0 12,60 5,0 10,0 5,0 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| 5,20 46,0 70,0 46,0 0,20 230,0 12,80 5,0 11,0 5,0 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 5,40 48,0 51,0 48,0 2,07 23,0 <b>13,00</b> 5,0 10,0 5,0 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| 5,60 47,0 78,0 47,0 1,20 39,0 13,20 6,0 11,0 6,0 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 5,80 32,0 50,0 32,0 1,40 23,0 13,40 9,0 12,0 9,0 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| <b>6,00</b> 35,0 56,0 35,0 1,33 26,0 13,60 7,0 12,0 7,0 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| 6,20 40,0 60,0 40,0 1,27 32,0 13,80 6,0 13,0 6,0 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 6,40 41,0 60,0 41,0 1,60 26,0 <b>14,00</b> 8,0 10,0 8,0 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| 6,60 42,0 66,0 42,0 1,07 39,0 14,20 9,0 12,0 9,0 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 6,80 39,0 55,0 39,0 2,13 18,0 14,40 10,0 13,0 10,0 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| <b>7,00</b> 38,0 70,0 38,0 1,87 20,0 14,60 9,0 12,0 9,0 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| 7,20 42,0 70,0 42,0 0,73 57,0 14,80 7,0 12,0 7,0 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 7,40 41,0 52,0 41,0 0,53 77,0 <b>15,00</b> 8,0 12,0 8,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| 7,60 50,0 58,0 50,0 1,27 39,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |

<sup>-</sup> PENETROMETRO STATICO tipo da 20 t - (con anello allargatore) - - COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s - punta meccanica tipo Begemann Ø = 35.7 mm (area punta 10 cm² - apertura 60°)

<sup>-</sup> manicotto laterale (superficie 150 cm²)

Riferimento: 121-2020 CPT 5

## PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

2.0105-PG076

- committente : Geol. Marco Toschi - data : 07/12/2020 - lavoro: indagine geognostica - quota inizio: -0.4m da p.c. - falda : ex caserma Curtatone Montanara - Pisa - località:

- assist. cantiere : - data di emissione :

14/12/2020

- note : riporto superato in DPSH; falda -1.18

| TIOLE . | 1    | iporto supi | Cialo III Di       | Oi i, iaida        | 1.10  |       |      |      |                    |                    |       |
|---------|------|-------------|--------------------|--------------------|-------|-------|------|------|--------------------|--------------------|-------|
| prf     | L1   | L2          | qc                 | fs                 | qc/fs | prf   | L1   | L2   | qc                 | fs                 | qc/fs |
| m       | -    | -           | Kg/cm <sup>2</sup> | Kg/cm <sup>2</sup> | -     | m     | -    | -    | Kg/cm <sup>2</sup> | Kg/cm <sup>2</sup> | -     |
| 0,20    |      |             |                    |                    |       | 7,80  | 34,0 | 40,0 | 34,0               | 0,47               | 73,0  |
| 0,40    |      |             |                    | 0,27               |       | 8,00  | 35,0 | 42,0 | 35,0               | 0,67               | 52,0  |
| 0,60    | 11,0 | 15,0        | 11,0               | 0,20               | 55,0  | 8,20  | 34,0 | 44,0 | 34,0               | 0,80               | 42,0  |
| 0,80    | 14,0 | 17,0        | 14,0               | 0,40               | 35,0  | 8,40  | 36,0 | 48,0 | 36,0               | 0,53               | 67,0  |
| 1,00    | 18,0 | 24,0        | 18,0               | 0,73               | 25.0  | 8,60  | 59,0 | 67,0 | 59.0               | 0,80               | 74,0  |
| 1,20    | 17,0 | 28,0        | 17,0               | 1,00               | 17,0  | 8,80  | 65,0 | 77,0 | 65,0               | 1,87               | 35,0  |
| 1,40    | 13,0 | 28,0        | 13,0               | 0,93               | 14,0  | 9,00  | 40,0 | 68,0 | 40,0               | 0,87               | 46,0  |
| 1,60    | 5,0  | 19,0        | 5,0                | 0,53               | 9,0   | 9,20  | 38,0 | 51,0 | 38,0               | 0,93               | 41,0  |
| 1,80    | 7,0  | 15,0        | 7,0                | 0,20               | 35,0  | 9,40  | 34,0 | 48,0 | 34,0               | 1,20               | 28,0  |
| 2,00    | 7,0  | 10,0        | 7,0                | 0,60               | 12,0  | 9,60  | 46,0 | 64,0 | 46,0               | 1,73               | 27,0  |
| 2,20    | 8,0  | 17,0        | 8,0                | 0,20               | 40,0  | 9,80  | 40,0 | 66,0 | 40,0               | 1,33               | 30,0  |
| 2,40    | 9,0  | 12,0        | 9,0                | 1,20               | 7,0   | 10,00 | 44,0 | 64,0 | 44,0               | 0,60               | 73,0  |
| 2,60    | 16,0 | 34,0        | 16,0               | 2,80               | 6,0   | 10,20 | 71,0 | 80,0 | 71,0               | 1,07               | 67,0  |
| 2,80    | 21,0 | 63,0        | 21,0               | 2,73               | 8,0   | 10,40 | 68,0 | 84,0 | 68,0               | 0,80               | 85,0  |
| 3,00    | 28,0 | 69,0        | 28,0               | 3,47               | 8,0   | 10,60 | 50,0 | 62,0 | 50,0               | 1,07               | 47,0  |
| 3,20    | 26,0 | 78,0        | 26,0               | 8,53               | 3,0   | 10,80 | 35,0 | 51,0 | 35,0               | 1,93               | 18,0  |
| 3,40    | 34,0 | 162,0       | 34,0               | 2,07               | 16,0  | 11,00 | 30,0 | 59,0 | 30,0               | 2,67               | 11,0  |
| 3,60    | 36,0 | 67,0        | 36,0               | 3,93               | 9,0   | 11,20 | 8,0  | 48,0 | 8,0                | 0,67               | 12,0  |
| 3,80    | 41,0 | 100,0       | 41,0               | 3,07               | 13,0  | 11,40 | 8,0  | 18,0 | 8,0                | 0,60               | 13,0  |
| 4,00    | 23,0 | 69,0        | 23,0               | 4,73               | 5,0   | 11,60 | 9,0  | 18,0 | 9,0                | 0,53               | 17,0  |
| 4,20    | 26,0 | 97,0        | 26,0               | 1,00               | 26,0  | 11,80 | 8,0  | 16,0 | 8,0                | 0,47               | 17,0  |
| 4,40    | 22,0 | 37,0        | 22,0               | 0,47               | 47,0  | 12,00 | 9,0  | 16,0 | 9,0                | 0,33               | 27,0  |
| 4,60    | 30,0 | 37,0        | 30,0               | 0,87               | 35,0  | 12,20 | 8,0  | 13,0 | 8,0                | 0,27               | 30,0  |
| 4,80    | 33,0 | 46,0        | 33,0               | 0,60               | 55,0  | 12,40 | 9,0  | 13,0 | 9,0                | 0,40               | 22,0  |
| 5,00    | 43,0 | 52,0        | 43,0               | 1,00               | 43,0  | 12,60 | 10,0 | 16,0 | 10,0               | 0,53               | 19,0  |
| 5,20    | 33,0 | 48,0        | 33,0               | 1,27               | 26,0  | 12,80 | 7,0  | 15,0 | 7,0                | 0,40               | 17,0  |
| 5,40    | 32,0 | 51,0        | 32,0               | 0,87               | 37,0  | 13,00 | 6,0  | 12,0 | 6,0                | 0,40               | 15,0  |
| 5,60    | 33,0 | 46,0        | 33,0               | 0,87               | 38,0  | 13,20 | 8,0  | 14,0 | 8,0                | 0,40               | 20,0  |
| 5,80    | 46,0 | 59,0        | 46,0               | 1,20               | 38,0  | 13,40 | 9,0  | 15,0 | 9,0                | 0,60               | 15,0  |
| 6,00    | 47,0 | 65,0        | 47,0               | 0,87               | 54,0  | 13,60 | 6,0  | 15,0 | 6,0                | 0,33               | 18,0  |
| 6,20    | 61,0 | 74,0        | 61,0               | 0,73               | 83,0  | 13,80 | 5,0  | 10,0 | 5,0                | 0,33               | 15,0  |
| 6,40    | 78,0 | 89,0        | 78,0               | 1,07               | 73,0  | 14,00 | 8,0  | 13,0 | 8,0                | 0,40               | 20,0  |
| 6,60    | 35,0 | 51,0        | 35,0               | 1,07               | 33,0  | 14,20 | 6,0  | 12,0 | 6,0                | 0,33               | 18,0  |
| 6,80    | 35,0 | 51,0        | 35,0               | 0,53               | 66,0  | 14,40 | 8,0  | 13,0 | 8,0                | 0,27               | 30,0  |
| 7,00    | 36,0 | 44,0        | 36,0               | 1,60               | 22,0  | 14,60 | 7,0  | 11,0 | 7,0                | 0,40               | 17,0  |
| 7,20    | 40,0 | 64,0        | 40,0               | 1,07               | 37,0  | 14,80 | 6,0  | 12,0 | 6,0                | 0,33               | 18,0  |
| 7,40    | 29,0 | 45,0        | 29,0               | 0,67               | 43,0  | 15,00 | 6,0  | 11,0 | 6,0                |                    |       |
| 7,60    | 46,0 | 56,0        | 46,0               | 0,40               | 115,0 |       |      |      |                    |                    |       |

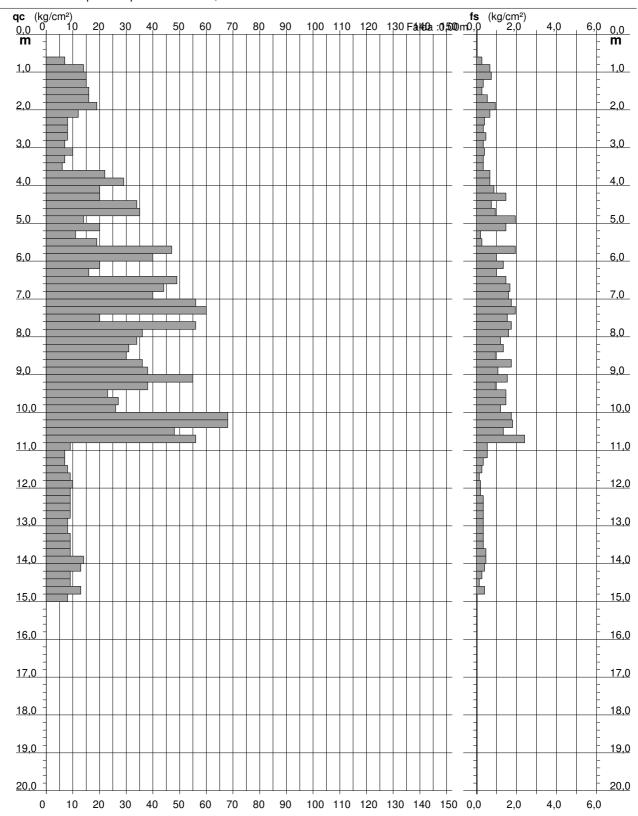
<sup>-</sup> PENETROMETRO STATICO tipo da 20 t - (con anello allargatore) - - COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità avanzamento punta 2 cm/s - punta meccanica tipo Begemann Ø = 35.7 mm (area punta 10 cm² - apertura 60°)

<sup>-</sup> manicotto laterale (superficie 150 cm²)

55100 Lucca Riferimento: 121-2020

### PROVA PENETROMETRICA STATICA **DIAGRAMMA DI RESISTENZA**

CPT 1


2.0105-PG076

- data : Geol. Marco Toschi 07/12/2020 - committente : - lavoro: indagine geognostica - quota inizio: -0.6m da p.c. - falda : ex caserma Curtatone Montanara - Pisa

- località: - assist. cantiere : - data di emissione :

14/12/2020

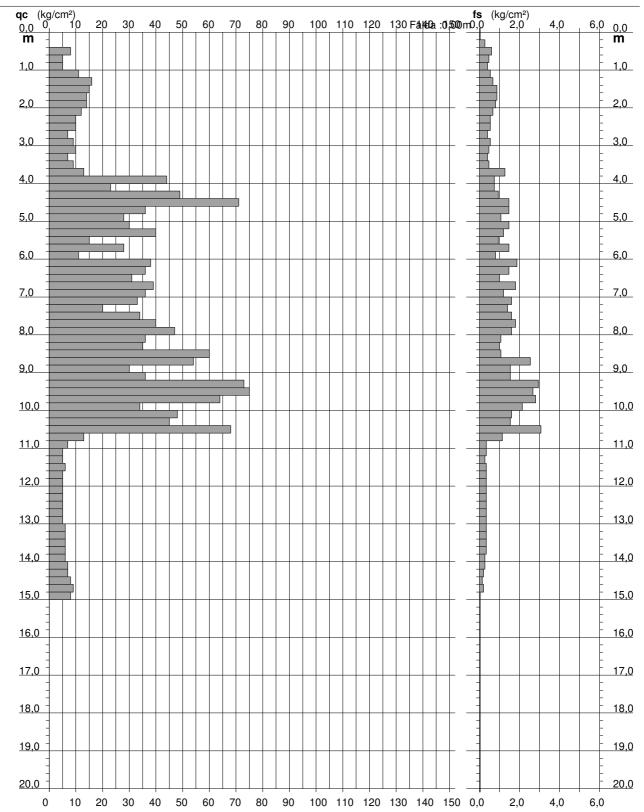
riporto superato in DPSH; falda -1.18 - note :



55100 Lucca Riferimento: 121-2020

# PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT 2


2.0105-PG076

committente : Geol. Marco Toschi
 lavoro : indagine geognostica
 località : ex caserma Curtatone Montanara - Pisa
 data : 07/12/2020
 quota inizio : -0.4m da p.c.
 falda :

- assist. cantiere : - data di emissione :

14/12/2020

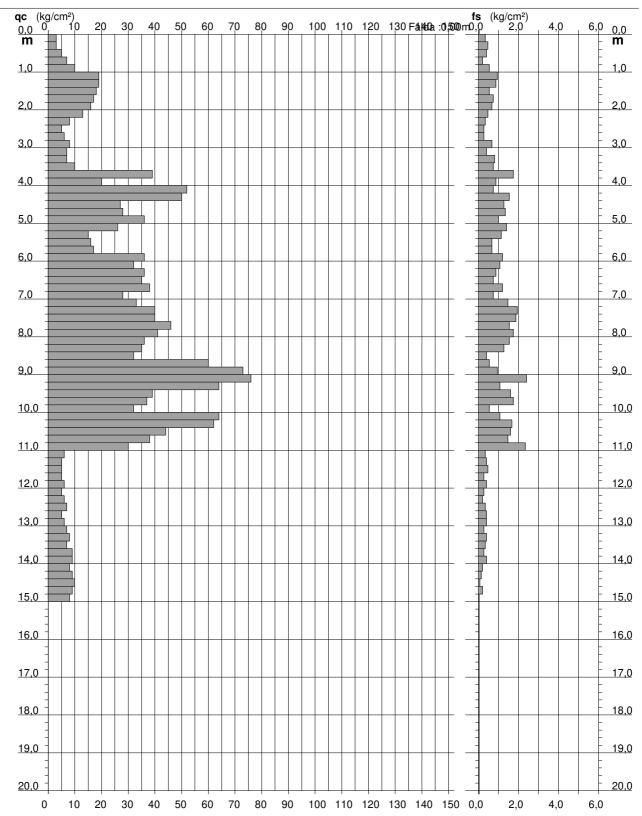
- note: riporto superato in DPSH; falda -1.18



55100 Lucca Riferimento: 121-2020

# PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT 3


2.0105-PG076

- committente : Geol. Marco Toschi - data : 07/12/2020 - lavoro : indagine geognostica - quota inizio : p.c.

- località : ex caserma Curtatone Montanara - Pisa - falda : - data di emissione :

14/12/2020

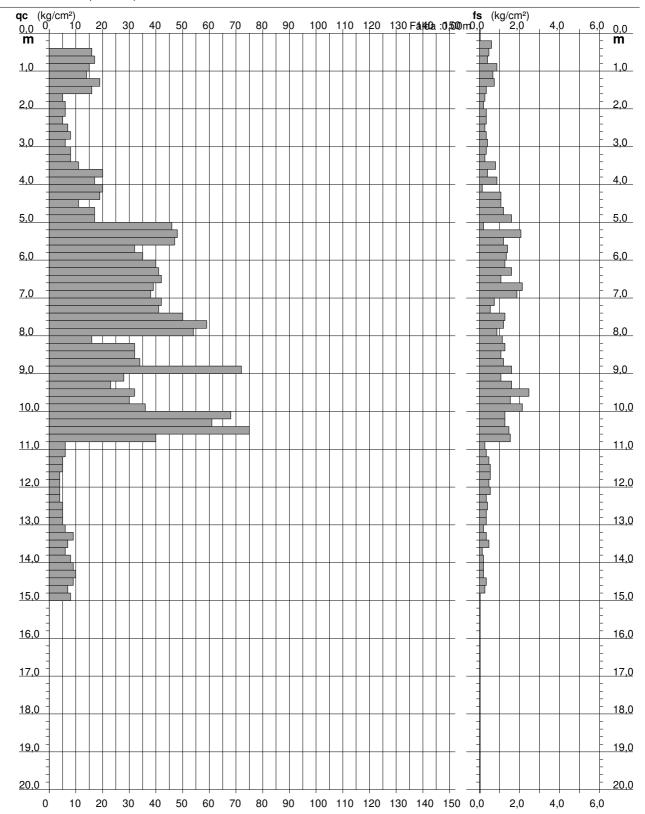
- note : falda -1.18



55100 Lucca Riferimento: 121-2020

### PROVA PENETROMETRICA STATICA **DIAGRAMMA DI RESISTENZA**

CPT 4


2.0105-PG076

- data : Geol. Marco Toschi 07/12/2020 - committente : - lavoro: indagine geognostica - quota inizio: -0.4m da p.c. - falda : ex caserma Curtatone Montanara - Pisa

- località: - assist. cantiere : - data di emissione :

14/12/2020

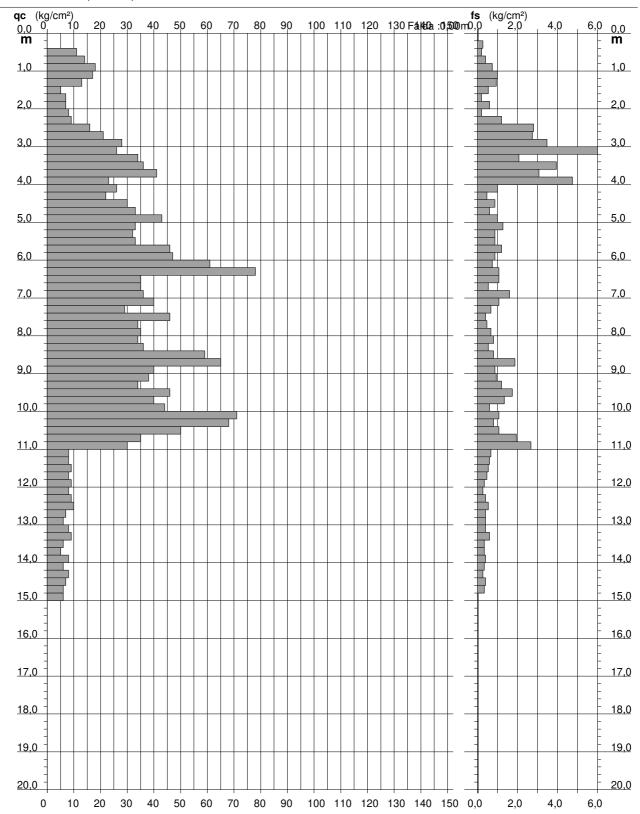
riporto superato in DPSH; falda -1.18 - note :



55100 Lucca Riferimento: 121-2020

# PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT 5


2.0105-PG076

committente : Geol. Marco Toschi
 lavoro : indagine geognostica
 località : ex caserma Curtatone Montanara - Pisa
 data : 07/12/2020
 quota inizio : -0.4m da p.c.
 falda :

- assist. cantiere : - data di emissione :

14/12/2020

- note: riporto superato in DPSH; falda -1.18



committente :lavoro :

località :assist. cantiere :

Riferimento: 121-2020

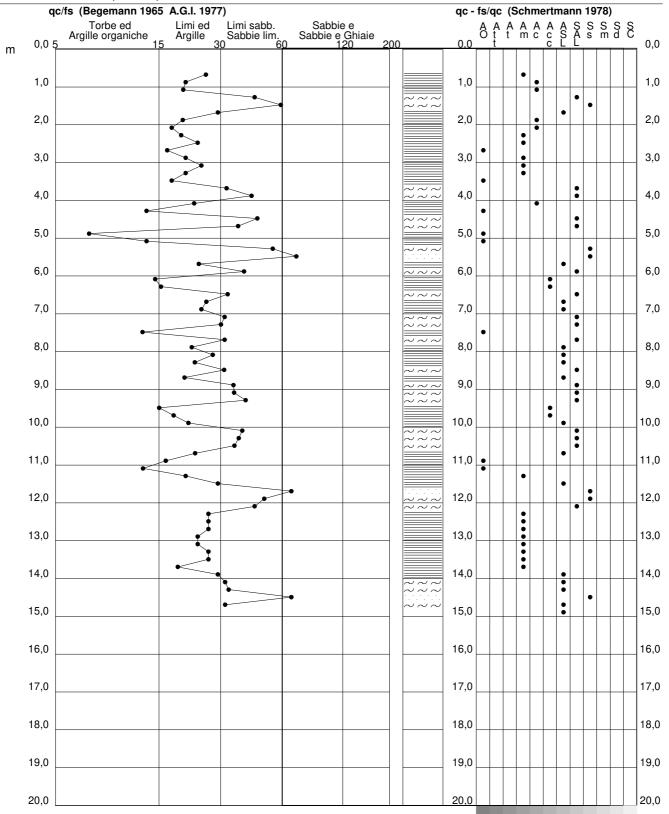
# PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

**CPT 1** 2.0105-PG076

- data : 07/12/2020 - quota inizio : -0.6m da p.c.

- falda :

- data di emissione :


14/12/2020

- note: riporto superato in DPSH; falda -1.18

Geol. Marco Toschi

indagine geognostica

ex caserma Curtatone Montanara - Pisa



PROVA PENETROMETRICA STATICA

CPT 2

Riferimento: 121-2020

2.0105-PG076

Geol. Marco Toschi - committente : - lavoro: indagine geognostica

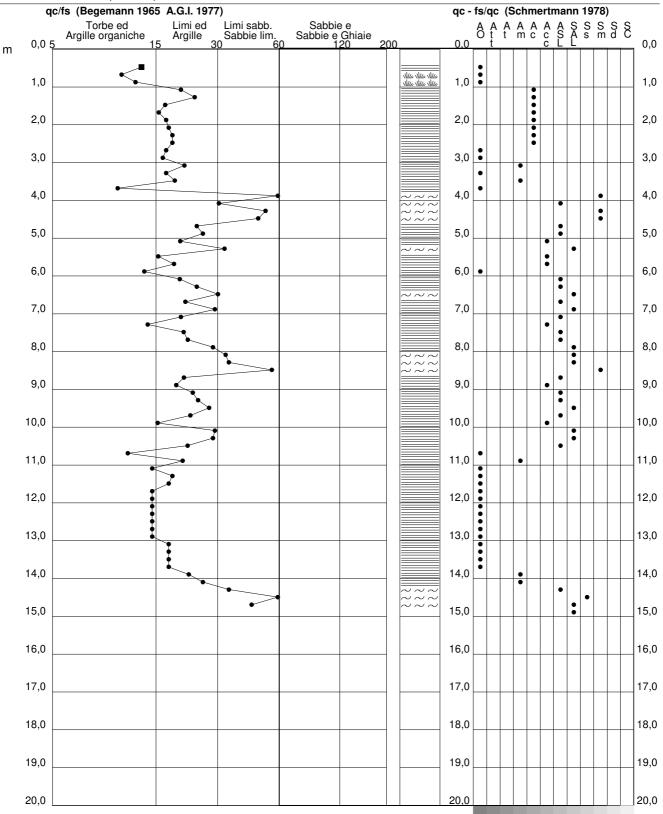
ex caserma Curtatone Montanara - Pisa - località:

VALUTAZIONI LITOLOGICHE

- assist. cantiere :

-0.4m da p.c. - falda :

- quota inizio:


- data :

- data di emissione :

14/12/2020

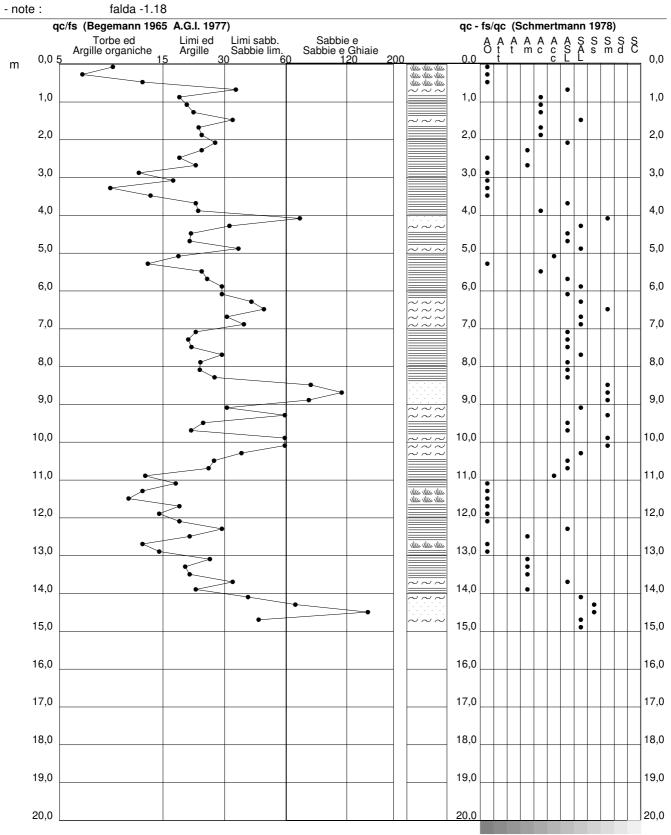
07/12/2020

riporto superato in DPSH; falda -1.18 - note :



PROVA PENETROMETRICA STATICA
VALUTAZIONI LITOLOGICHE

Riferimento: 121-2020


2.0105-PG076

- committente : Geol. Marco Toschi - data : 07/12/2020

- lavoro : indagine geognostica - quota inizio : p.c.
 - località : ex caserma Curtatone Montanara - Pisa - falda :

- assist. cantiere : - data di emissione :

14/12/2020



Riferimento: 121-2020 PROVA PENETROMETRICA STATICA

# VALUTAZIONI LITOLOGICHE

CPT 4

07/12/2020

-0.4m da p.c.

2.0105-PG076

14,0

15,0

16.0

17,0

18,0

19,0

20,0

Geol. Marco Toschi - committente : - lavoro: indagine geognostica

ex caserma Curtatone Montanara - Pisa - località:

riporto superato in DPSH; falda -1.18

- assist. cantiere :

- note :

- falda :

- data di emissione :

- data :

14,0

15,0

16,0

17,0

18,0

19,0

20,0

- quota inizio:

14/12/2020

qc/fs (Begemann 1965 A.G.I. 1977) qc - fs/qc (Schmertmann 1978) Sabbie e Sabbie e Ghiaie 120\_\_\_\_ Torbe ed Argille organiche Limi ed Limi sabb. Sabbie lim A A A A t m c c A S S A Argille 0,0 0,0 5 1,0 1,0 1,0 2,0 2,0 2,0 3,0 3,0 3,0 4,0 4,0 4,0 5,0 5,0 5,0 6,0 6.0 6,0 • ~ ~ ~ 7,0 7,0 7,0 8,0 8,0 8,0 9,0 9,0 9,0 10,0 10,0 10,0 11,0 11,0 11,0 Alie Alie Alie
Alie Alie Alie
Alie Alie Alie
Alie Alie Alie
Alie Alie
Alie Alie
Alie Alie
Alie Alie
Alie Alie 12,0 12,0 12,0 13,0 13,0 13,0 ~~~ ~~~ ~~~

14,0

15,0

16,0

17,0

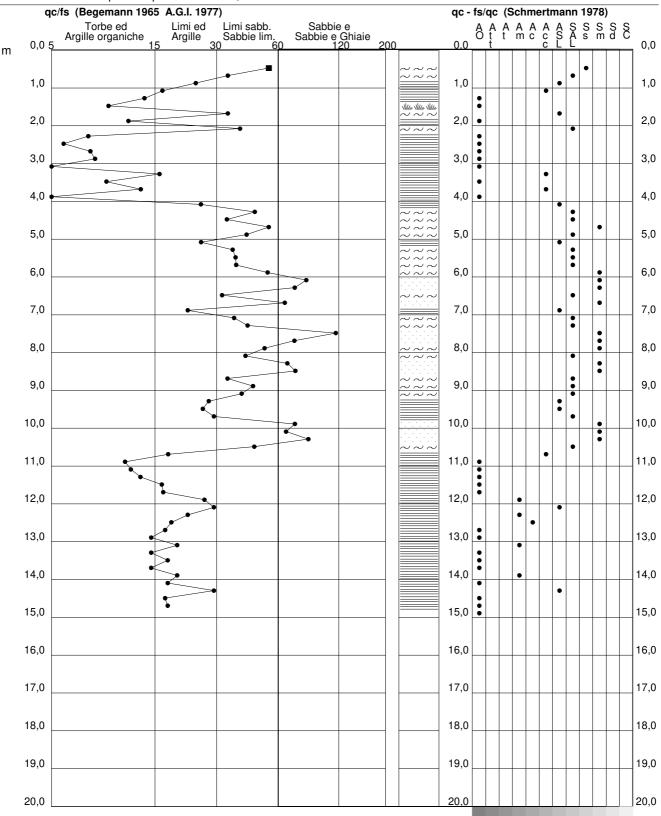
18,0

19,0

20,0

PROVA PENETROMETRICA STATICA CPT 5

# PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE


**CPT 5** 2.0105-PG076

- committente : Geol. Marco Toschi - data : 07/12/2020 - lavoro : indagine geognostica - quota inizio : -0.4m da p.c.

- località : ex caserma Curtatone Montanara - Pisa - falda : - assist. cantiere : - data di emissione :

14/12/2020

- note: riporto superato in DPSH; falda -1.18



CPT 1

2.0105-PG076

Riferimento: 121-2020

Geol. Marco Toschi - committente : - data : 07/12/2020 - lavoro: indagine geognostica - quota inizio: -0.6m da p.c.

ex caserma Curtatone Montanara - Pisa - falda : - località : - assist. cantiere :

- data di emissione :

14/12/2020

riporto superato in DPSH; falda -1.18 - note :

| - HOLE .                |                                           | проп                        | Jul                  | Joraco               | וט וווי              |                           |                   | 1.10           |               |                |                |                |                |                |                            |                                  |                         |                 |                |                  |
|-------------------------|-------------------------------------------|-----------------------------|----------------------|----------------------|----------------------|---------------------------|-------------------|----------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------------------|----------------------------------|-------------------------|-----------------|----------------|------------------|
|                         |                                           |                             |                      |                      | NAT                  | URA                       | COES              | IVA            |               |                |                |                | NATU           | JRA (          | GRAI                       | ΝŲĻ                              | ARE                     |                 |                |                  |
| Prof.<br>m              | qc qc/fs<br>kg/cm² (-)                    |                             | Y'<br>t/m³           | p'vo<br>kg/cm²       | Cu<br>kg/cm²         | OCR<br>(-)                | Eu50<br>kg/c      | Eu25           | Mo<br>kg/cm²  | Dr<br>%        | ø1s<br>(°)     | ø2s<br>(°)     | ø3s<br>(°)     | ø4s<br>(°)     | ødm<br>(°)                 | ømy<br>(°)                       | Amax/g<br>(-)           | E'50<br>kg/d    |                | Mo<br>/cm²       |
| 0,20                    |                                           | ???                         | 0,85                 | 0,02                 |                      |                           |                   |                |               |                |                |                |                |                |                            |                                  |                         |                 |                |                  |
| 0,40<br>0,60            |                                           | ???                         | 0,85<br>0,85         | 0,03<br>0,05         |                      |                           |                   |                |               |                |                |                |                |                |                            |                                  |                         |                 |                |                  |
| 0,80<br>1,00            | 7 26<br>14 21                             | 2///<br>2///                | 0,84<br>0,94         | 0,07<br>0,09         | 0,35<br>0,64         | 48,9<br>76,0              | 59<br>108         | 89<br>162      | 32<br>48      |                |                |                |                |                |                            |                                  |                         |                 |                |                  |
| 1,20<br>1,40            | 14 21<br>15 20<br>15 45                   | 2///<br>4/:/:               | 0,95                 | 0,11<br>0,12         | 0,67<br>0,67         | 62,8<br>51,7              | 113<br>113        | 170<br>170     | 50<br>50      | 58             | 36             | 38             | 40             | 43             | 38                         | 27                               | 0,125                   | 25              | 38             | 45               |
| 1,60<br>1,80            | 16 60<br>16 30                            | ) 4/:/:<br>) 4/:/:          | 0,90                 | 0,14<br>0,16         | 0,70<br>0,70         | 46,0<br>39,6              | 118<br>118        | 177<br>177     | 52<br>52      | 57<br>54       | 36<br>36       | 38<br>38       | 40<br>40       | 43<br>42       | 38<br>37                   | 27<br>27                         | 0,125<br>0,122<br>0,114 | 27<br>27        | 40<br>40       | 48<br>48         |
| 2,00<br>2,20<br>2,40    | 19 20<br>12 18                            | 2///<br>3 2///              | 0,99<br>0,92         | 0,18<br>0,20         | 0,78<br>0,57         | 39,2<br>23,7              | 132<br>97         | 198<br>146     | 58<br>45      |                |                |                |                |                |                            |                                  |                         |                 |                |                  |
| 2,40<br>2,60            | 12 18<br>8 20<br>8 24                     | 2///                        | 0,86<br>0,86         | 0,21                 | 0,40<br>0,40         | 13,7<br>12,4              | 68<br>68          | 102<br>102     | 35<br>35      |                |                |                |                |                |                            |                                  |                         |                 |                |                  |
| 2,80<br>3,00            | 8 17<br>7 21<br>10 25                     | ' 2////                     | 0,86<br>0,84         | 0,25<br>0,27         | 0,40<br>0,35         | 11,3<br>8,8               | 68<br>63          | 102<br>95      | 35<br>32      |                |                |                |                |                |                            |                                  |                         |                 |                |                  |
| 3,20<br>3,40            | 10 25<br>7 21<br>6 18                     | 2///<br>2///<br>3 2///      | 0,90<br>0,84         | 0,28<br>0,30         | 0,50<br>0,35         | 8,8<br>12,7<br>7,6<br>5,9 | 85<br>73          | 128<br>110     | 40<br>32      |                |                |                |                |                |                            |                                  |                         |                 |                |                  |
| 3,60<br>3,80            | 22 33                                     | 3::::                       | 0,82                 | 0,32<br>0,33         | 0,30                 | 5,9                       | 85<br>            | 127            | 29            | 47             | 35             | 37             | 39             | 42             | 35                         | 28                               | 0,096                   | 37              | 55             | 66               |
| 4,00<br>4,20            | 29 43<br>20 23                            | 3::::<br>3 4/:/:            | 0,87                 | 0,35<br>0,37         | 0,80                 | 16,4                      | 136               | 204            | 60            | 55<br>41       | 36<br>34       | 38<br>36       | 40<br>39       | 42<br>41       | 36<br>34                   | 29<br>27                         | 0,117<br>0,082          | 48<br>33        | 73<br>50       | 87<br>60         |
| 4,40<br>4,60            | 20 14<br>34 46                            | 4/:/:<br>3 3::::            | 0,93                 | 0,39<br>0,41         | 0,80                 | 15,5                      | 136               | 204            | 60            | 40<br>57       | 34<br>36       | 36<br>38       | 39<br>40       | 41<br>43       | 33<br>36                   | 27<br>29<br>29                   | 0,079<br>0,122          | 33<br>57        | 50<br>85       | 60<br>102        |
| 4,80<br>5,00            | 35 37<br>14 7                             | 3::::<br>2////              | 0,89<br>0,94         | 0,42<br>0,44         | 0,64                 | 9,9                       | 108               | 163            | 48            | 57<br>         | 36             | 38             | 40             | 43             | 36                         |                                  | 0,122                   | 58              |                | 105              |
| 5,20<br>5,40            | 20 14<br>11 55<br>19 71                   | 4/:/:<br>4/:/:              | 0,93                 | 0,46<br>0,48         | 0,80<br>0,54         | 12,5<br>7,2               | 136<br>119        | 204<br>178     | 60<br>42      | 36<br>14       | 33<br>30<br>32 | 36<br>33<br>35 | 38<br>36       | 41<br>39<br>41 | 32<br>29<br>32             | 27<br>26<br>27                   | 0,070<br>0,027          | 33<br>18        | 50<br>28       | 60 —<br>33<br>57 |
| 5,60<br>5,80            | 47 24                                     | 4/:/:                       | 0,92<br>1,01         | 0,50<br>0,52         | 0,78<br>1,57         | 10,9<br>25,1              | 132<br>266        | 198<br>400     | 58<br>141     | 32<br>62       | 37             | 39             | 38<br>41       | 43             | 36                         | 31                               | 0,062<br>0,136          | 32<br>78        |                | 141              |
| 6,00<br>6,20            | 40 40<br>20 15                            | 4/:/:                       | 0,90<br>0,93         | 0,54<br>0,55         | 0,80                 | 9,9                       | 136               | 204            | 60            | 56<br>31       | 36<br>32       | 38<br>35       | 40<br>38       | 42<br>40       | 35<br>31                   | 30<br>27                         | 0,119<br>0,060          | 67<br>33        | 100<br>50      | <sup>120</sup> — |
| 6,40<br>6,60            | 16 16<br>49 33                            |                             | 0,96<br>0,92         | 0,57<br>0,59         | 0,70                 | 8,0                       | 138               | 206            | 52            | 60             | 36             | 38             | 41             | 43             | 36<br>35                   | 31                               | 0,131                   | 82              | 123            | 147              |
| 6,80<br>7,00            | 49 33<br>44 26<br>40 25<br>56 32<br>60 31 | 4/:/:<br>4/:/:              | 1,00                 | 0,61<br>0,63         | 1,47<br>1,33         | 18,7<br>16,0              | 249<br>227        | 374<br>340     | 132<br>120    | 56<br>52       | 36<br>35       | 38<br>37       | 40<br>40       | 42<br>42       | 34                         | 31<br>30                         | 0,119<br>0,108          | 73<br>67        | 100            | 132              |
| 7,20<br>7,40            | 56 32<br>60 31                            | 3::::                       | 0,93                 | 0,65<br>0,67         |                      |                           |                   |                |               | 63<br>64       | 35<br>37<br>37 | 39<br>39       | 41<br>41       | 43<br>43       | 36<br>36                   | 31<br>32<br>27                   | 0,138<br>0,142          | 93<br>100       | 150            | 168              |
| 7,60<br>7,80            | 20 13<br>56 32<br>36 22                   |                             | 0,93<br>0,93<br>0,99 | 0,69<br>0,71         | 0,80                 | 7,6<br><br>11,8           | 168<br><br>204    | 251<br><br>306 | 60<br><br>108 | 26<br>61       | 32<br>36<br>34 | 34<br>39<br>37 | 37<br>41       | 40<br>43<br>42 | 30<br>36                   | 31                               | 0,049<br>0,132          | 33<br>93        | 50<br>140      | 60<br>168<br>108 |
| 8,00<br>8,20            | 34 28                                     | 4/:/:                       | 0,98                 | 0,73<br>0,74         | 1,20<br>1,13         | 10,6                      | 193               | 289            | 102           | 45<br>42       | 34             | 36             | 39<br>39       | 41             | 36<br>33<br>33<br>32<br>32 | 31<br>30<br>29<br>29<br>29<br>30 | 0,091<br>0,085          | 60<br>57<br>52  | 85             | 102 —            |
| 8,40<br>8,60<br>8,80    | 31 23<br>30 32<br>36 21                   | 3 4/:/:<br>2 3::::<br>4/:/: | 0,97<br>0,88<br>0,99 | 0,76<br>0,78<br>0,80 | 1,03<br><br>1,20     | 9,2                       | 182<br><br>204    | 272<br><br>306 | 93<br><br>108 | 38<br>37<br>42 | 33<br>33<br>34 | 36<br>36<br>36 | 38<br>38<br>39 | 41<br>41<br>41 | 32<br>33                   | 29                               | 0,076<br>0,072<br>0,085 | 50<br>60        | 78<br>75<br>90 | 93<br>90<br>108  |
| 9,00<br>9,20            | 38 36<br>55 36                            | 3::::<br>3::::              | 0,90<br>0,93         | 0,80<br>0,82<br>0,84 | 1,20<br>             | 10,4<br><br>              | 204<br>           |                |               | 44<br>56       | 34<br>36       | 36<br>38       | 39<br>40       | 41<br>42       | 33<br>35                   | 30<br>31                         | 0,088<br>0,119          | 63<br>92        | 95             | 114<br>165 —     |
| 9,40<br>9,60            | 38 41<br>23 16                            | 3::::                       | 0,90<br>0,94         | 0,86<br>0,87         | 0,87                 | 6,2                       | 229               | 343            | 69            | 43<br>25       | 34<br>31       | 36<br>34       | 39<br>37       | 41<br>40       | 32<br>30                   | 30<br>28                         | 0,086<br>0,047          | 63<br>38        |                | 114<br>69        |
| 9,80<br>10,00           | 27 18<br>26 22                            | 3 4/:/:                     | 0,94<br>0,95<br>0,95 | 0,87<br>0,89<br>0,91 | 0,87<br>0,95<br>0,93 | 6,8<br>6,4                | 227<br>236        | 341<br>354     | 81<br>78      | 30<br>28       | 32<br>32       | 35<br>35       | 38<br>37       | 40<br>40<br>40 | 30<br>30                   | 28                               | 0,047<br>0,057<br>0,053 | 45<br>43        | 68<br>65       | 81<br>78         |
| 10,20<br>10,40          | 68 39                                     | 3::::                       | 0,95<br>0,95         | 0,93<br>0,95         |                      |                           |                   |                |               | 60<br>60       | 36             | 39             | 41<br>41       | 43             | 35                         | 28<br>28<br>32<br>32<br>31       | 0,132<br>0,130          | 113             | 170 2          | 204 —<br>204     |
| 10,60<br>10,80          | 68 38<br>48 36<br>56 23                   | 3::::<br>3::::<br>4/:/:     | 0,91                 | 0,97<br>0,99         | 1,87                 | 13,9                      | 317               | 476            | 168           | 48<br>52       | 36<br>35<br>35 | 38<br>37<br>38 | 39<br>40       | 43<br>42<br>42 | 35<br>33<br>34             | 31<br>31                         | 0,098<br>0,110          | 113<br>80<br>93 | 120            | 144<br>168       |
| 11,00<br>11,20          | 9 17<br>7 13                              | ' 2////                     | 0,88<br>0,46         | 1,01<br>1,02         | 0,45<br>0,35         | 2,3<br>1,7                | 244<br>44         | 367<br>65      | 38<br>11      |                |                |                |                |                |                            |                                  |                         |                 |                |                  |
| 11,40<br>11,60          | 7 21                                      | 2////                       | 0,84<br>0,84         | 1,03<br>1,05         | 0,35<br>0,40         | 1,6<br>1,9                | 202<br>226        | 304<br>340     | 32<br>35      |                | 28             | 31             | 35             | 38             | <br>25                     | 26                               |                         | 13              | 20             | 24               |
| 11,80<br>12,00          | 8 30<br>9 67<br>10 50                     | 4/:/:<br>4/:/:              | 0,85<br>0,86         | 1,07<br>1,08         | 0,45<br>0,50         | 2,1<br>2,4                | 249<br>269        | 373<br>403     | 38<br>40      |                | 28<br>28<br>28 | 31<br>31<br>31 | 35<br>35<br>35 | 38<br>38<br>38 | 25<br>25<br>25             | 26<br>26                         |                         | 13<br>15<br>17  | 20<br>23<br>25 | 24<br>27<br>30   |
| 12,20<br>12,40          | 9 45                                      | 4/:/:<br>2///               | 0,85<br>0,88         | 1,10<br>1,12         | 0,45<br>0,45         | 2,1<br>2,0                | 251<br>252        | 376<br>378     | 38<br>38      |                | 28             | 31             | 35             | 38             | 25                         | 26                               |                         | 15              | 23             | 27 —             |
| 12.60                   | 9 27<br>9 27<br>8 24                      | 2///<br>2///                | 0,88<br>0,88         | 1,14<br>1,15         | 0,45<br>0,45         | 2,0<br>1,9                | 253<br>254        | 379<br>380     | 38<br>38      |                |                |                |                |                |                            |                                  |                         |                 |                |                  |
| 12,80<br>13,00<br>13,20 | 8 24<br>8 24                              | 2///                        | 0,86<br>0,86         | 1,17<br>1,19         | 0,40<br>0,40         | 1,6<br>1,6                | 231<br>231        | 346<br>347     | 35<br>35      |                |                |                |                |                |                            |                                  |                         |                 |                | <u> </u>         |
| 13,40<br>13.60          | 9 27                                      | 2///                        | 0,88<br>0,88         | 1 21                 | 0,45<br>0,45         | 1,8<br>1,8                | 256               | 384<br>385     | 38<br>38      |                |                |                |                |                |                            |                                  |                         |                 |                |                  |
| 13,80<br>14.00          | 9 19                                      | ) 4/·/·                     | 0,88<br>0.89         | 1,22<br>1,24<br>1,26 | 0,45<br>0.64         | 1.8                       | 257<br>257<br>329 | 386<br>494     | 38<br>48      |                | 28             | 31             | <br>35         | 38             | 25                         | 26                               |                         |                 |                | 42               |
| 14,20<br>14,40          | 13 32<br>9 34                             | 4/:/:<br>4/:/:              | 0,88<br>0,85         | 1,28<br>1,29         | 0,60<br>0,45         | 2,7<br>2,5<br>1,7         | 322<br>259        | 483<br>389     | 47<br>38      |                | 28<br>28       | 31<br>31       | 35<br>35<br>35 | 38<br>38       | 25<br>25<br>25             | 26<br>26                         |                         | 23<br>22<br>15  | 35<br>33<br>23 | 39 —<br>27       |
| 14,60<br>14,80          | 9 67<br>13 32                             | ' 4/:/:                     | 0,85<br>0,88         | 1,31<br>1,33         | 0,45<br>0,60         | 1,7<br>2,3                | 260<br>326        | 389<br>490     | 38<br>47      |                | 28<br>28       | 31<br>31       | 35<br>35       | 38<br>38       | 25<br>25                   | 26<br>26                         |                         | 15<br>22        | 23<br>33       | 27<br>39         |
| 15,00                   | 8                                         |                             | 0,86                 | 1,34                 | 0,40                 | 1,4                       | 235               | 353            | 35            |                |                |                |                |                |                            |                                  |                         |                 |                |                  |

CPT 2

2.0105-PG076

Riferimento: 121-2020

Geol. Marco Toschi - committente : - data : 07/12/2020 - lavoro: indagine geognostica - quota inizio: -0.4m da p.c. ex caserma Curtatone Montanara - Pisa - falda :

- località: - assist. cantiere : - data di emissione :

14/12/2020

riporto superato in DPSH; falda -1.18 - note :

|                                                                                                                                                                       | ATURA COESIMA                               |                            | IIIIIII NI     | ATURA GRA                                                | NULARE                                                   |                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------|----------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|
| Prof. qc qc/fs Natura Y' p'vo Cu                                                                                                                                      | OCR Eu50 Eu25                               | Mo Dr                      | ø1s ø2s ø      | ø3s ø4s ødm                                              | ømy Amax/g                                               | E'50 E'25 Mo                              |
| m kg/cm² (-) Litol. t/m³ kg/cm² kg/c<br>0,20 ??? 0,85 0,02 -                                                                                                          | m <sup>2</sup> (-) kg/cm <sup>2</sup>       | kg/cm² %<br>               | (°) (°)<br>    | (°) (°) (°)                                              | (°) (-)                                                  | kg/cm² kg/cm²<br>                         |
| 0,40 ??? 0,85 0,03 -<br>0,60 8 13 2/// 0,86 0,05 0,41                                                                                                                 | 82,0 68 102                                 | 35                         |                |                                                          |                                                          |                                           |
| 0,80 5 11 1*** 0,46 0,06 0,25<br>1,00 5 12 1*** 0,46 0,07 0,25<br>1,20 11 21 2//// 0,91 0,09 0,54                                                                     | 37,1 10 15<br>31,0 10 15<br>60,3 91 137     | 8<br>8<br>42               | <br><br>       |                                                          |                                                          | = = =                                     |
| 1,40 16 24 2/// 0,96 0,11 0,70<br>1,60 15 17 2/// 0,95 0,13 0,67                                                                                                      | 65,2 118 177<br>50,4 113 170                | 52<br>50                   |                |                                                          |                                                          |                                           |
| 1,80 14 16 2//// 0,94 0,14 0,64<br>2,00 14 17 2//// 0,94 0,16 0,64                                                                                                    | 39,9 108 162<br>34,3 108 162                | 48<br>48                   |                | <br>                                                     |                                                          | <br><u></u>                               |
| 2,20 12 18 2/// 0,92 0,18 0,5<br>2,40 10 19 2/// 0,90 0,20 0,50<br>2,60 10 19 2/// 0,90 0,22 0,50                                                                     | 26,2 97 146<br>19,7 85 128<br>17,7 85 128   | 45<br>40<br>40             |                |                                                          |                                                          | = = =                                     |
| 2,80 7 17 2/// 0,84 0,23 0,35<br>3,00 9 17 2/// 0,88 0,25 0,45                                                                                                        | 10,3 59 89<br>12,9 77 115                   | 32<br>38                   |                |                                                          |                                                          |                                           |
| 3,20 10 21 2/// 0,90 0,27 0,50<br>3.40 7 17 2/// 0.84 0.29 0.39                                                                                                       | 13,5 85 128<br>8.0 69 103                   | 40<br>32                   |                | <br>                                                     |                                                          |                                           |
| 3,60 9 19 2/// 0,88 0,30 0,44<br>3,80 13 10 2/// 0,93 0,32 0,60<br>4,00 44 60 3:::: 0,91 0,34 -                                                                       | 13,7 103 154                                | 38<br>47<br>70             | 38 40          | <br><br>42 44 38                                         | <br><br>31 0.159                                         | <br><br>73 110 132                        |
| 4,00 44 60 3 0,91 0,94 - 4,20 23 31 3 0,86 0,36 - 4,40 49 52 3 0,92 0,38 -                                                                                            |                                             | 70<br>46<br>71             | 35 37          | 42 44 38<br>39 42 34<br>42 44 38                         | 28 0,095<br>31 0,163                                     | 38 58 69<br>82 123 147                    |
| 4,60 71 48 3:::: 0,95 0,40 -<br>4.80 36 25 4/:/: 0,99 0,42 1,20                                                                                                       | 23,6 204 306                                | 83<br>108 58               | 40 41<br>36 38 | 43 45 40<br>40 43 36                                     | 32 0,199<br>30 0,126                                     | 118 178 213<br>60 90 108                  |
| 5,00 28 26 4/:/: 0,96 0,43 0,93<br>5,20 30 20 4/:/: 0,96 0,45 1,00<br>5,40 40 33 3:::: 0,90 0,47 -                                                                    | 17,0 164 246<br>16,8 170 255                | 84 49<br>90 50<br>59       | 35 37          | 39 42 35<br>40 42 35<br>40 43 36                         | 28 0,100<br>29 0,104<br>30 0,127                         | 47 70 84<br>50 75 90<br>67 100 120        |
| 5,60 15 16 2//// 0,95 0,49 0,67<br>5,80 28 19 4/:/: 0,96 0,51 0,97                                                                                                    | 9,2 117 175<br>13,9 164 246                 | 50<br>84 45                |                | 39 42 34                                                 | 28 0,091                                                 | 47 70 84                                  |
| 6,00 11 14 2/// 0,91 0,53 0,54 6,20 38 20 4/:/: 0,99 0,55 1,2                                                                                                         | 6,4 137 205<br>17,9 215 323                 | 42<br>114 53               | 35 38          | 40 42 35                                                 | 30 0,113                                                 | 63 95 114                                 |
| 6,40 36 25 4/:/: 0,99 0,57 1,20<br>6,60 31 31 3:::: 0,88 0,59 -<br>6,80 39 22 4/:/: 1,00 0,61 1,30                                                                    | 16,0 204 306<br><br>16,3 221 332            | 108 51<br>45<br>117 52     | 34 37          | 40 42 34<br>39 42 33<br>40 42 35                         | 30 0,106<br>29 0,091<br>30 0,109                         | 60 90 108<br>52 78 93<br>65 98 117        |
| 7,00 36 30 4/:/: 0,99 0,63 1,20<br>7,20 33 21 4/:/: 0,97 0,64 1,10                                                                                                    | 14.2 204 306                                | 108 48<br>99 45            | 35 37          | 39 42 34<br>39 42 33                                     | 30 0,100<br>29 0,091                                     | 60 90 108 <u> </u>                        |
| 7,40 20 14 4/:/: 0,93 0,66 0,80<br>7,60 34 21 4/:/: 0,98 0,68 1,11                                                                                                    | 11,8 193 289                                | 60 27<br>102 44            | 34 37          | 39 42 33                                                 | 27 0,051<br>29 0,090                                     | 33 50 60<br>57 85 102<br>67 100 120       |
| 7,60 34 21 4//: 0,98 0,68 1,13 7,80 40 22 4//: 1,00 0,70 1,33 8,00 47 29 4//: 1,01 0,72 1,51 8,20 36 34 3:::: 0,89 0,74 -                                             | 14,0 227 340<br>16,5 266 400                | 120 49<br>141 54<br>44     | 36 38          | 39 42 34<br>40 42 35<br>39 42 33<br>39 41 33<br>41 43 36 | 29 0,090<br>30 0,102<br>31 0,114<br>30 0,090             | 67 100 120<br>78 118 141<br>60 90 108     |
| 8,40 35 35 3:::: 0,89 0,76 -<br>8,60 60 56 3:::: 0,93 0,78 -                                                                                                          |                                             | 43<br>61                   | 34 36          | 39 41 33<br>41 43 36                                     | 30 0,090<br>29 0,086<br>32 0,132                         | 58 88 105<br>100 150 180                  |
| 8,80 54 21 4/:/: 1,01 0,80 1,80                                                                                                                                       | 8,1 195 293                                 | 162 56<br>90 36            | 36 38<br>33 36 | 40 43 35<br>38 41 31                                     | 31 0,121<br>29 0,070                                     | 90 135 162<br>50 75 90                    |
| 9,20 36 23 4/:: 0,99 0,84 1,20<br>9,40 73 25 4/:: 1,03 0,86 2,4:<br>9,60 75 28 4/:: 1,03 0,88 2,50                                                                    | 9,9 204 307<br>23,2 414 621<br>23,2 425 638 | 108 41<br>219 65<br>225 65 | 37 39          | 39 41 32<br>41 43 36<br>41 43 36                         | 31 0,121<br>29 0,070<br>30 0,083<br>32 0,144<br>32 0,145 | 60 90 108 —<br>122 183 219<br>125 188 225 |
| 9,80 75 26 4/3: 1,03 0,66 2,30<br>9,80 64 23 4/3: 1,02 0,90 2,11:<br>10,00 34 16 4/3: 0,98 0,92 1,13                                                                  | 18,5 363 544<br>8,2 219 329<br>12,2 272 408 | 192 59<br>102 37           | 36 38          | 40 43 35<br>38 41 31                                     | 32 0,128<br>29 0.073                                     | 107 160 192<br>57 85 102                  |
| 10,20 48 30 4/:/: 1,01 0,94 1,60<br>10,40 45 29 4/:/: 1,00 0,96 1,50                                                                                                  | 12.2 272 408                                | 144 48<br>135 46           | 35 37<br>34 37 | 39 42 33<br>39 42 33                                     | 31 0,100<br>31 0,093                                     | 80 120 144 —<br>75 113 135                |
| 10,80 13 11 2/// 0,93 1,00 0,60                                                                                                                                       | 3,4 280 420                                 | 204 59<br>47<br>32         | 36 38<br>      | 40 43 35                                                 | 32 0,128                                                 | 113 170 204<br>                           |
| 11,00 7 21 2/// 0,84 1,01 0,39<br>11,20 5 15 1*** 0,46 1,02 0,29<br>11,40 5 19 2/// 0,80 1,04 0,29                                                                    | 1,7 202 303<br>1,1 32 49<br>1,1 150 224     | 8<br>25                    |                |                                                          |                                                          | <u> </u>                                  |
| 11,60 6 18 2/// 0,82 1,05 0,30<br>11,80 5 15 1*** 0,46 1,06 0,20                                                                                                      | 1,3 177 266<br>1,0 32 49                    | 29<br>8                    |                |                                                          |                                                          | = = =                                     |
| 11,60 6 18 2/// 0,82 1,05 0,3<br>11,80 5 15 1*** 0,46 1,06 0,2;<br>12,00 5 15 1*** 0,46 1,07 0,2;<br>12,20 5 15 1*** 0,46 1,07 0,2;<br>12,40 5 15 1*** 0,46 1,08 0,2; | 1,0 32 49<br>1,0 32 49<br>1,0 33 49         | 8<br>8<br>8                |                |                                                          |                                                          | <u> </u>                                  |
| 12,60 5 15 1*** 0,46 1,10 0,29<br>12,80 5 15 1*** 0,46 1,11 0,29                                                                                                      | 1,0 33 49<br>1.0 33 49                      | 8<br>8                     | <br>           | <br>                                                     | <br>                                                     |                                           |
| <u>13,00</u> 5 15 1*** 0,46 1,12 0,29<br>13,20 6 18 2/// 0,82 1,14 0,30                                                                                               | 1,0 33 49<br>1,2 178 268                    | 8<br>29                    |                |                                                          |                                                          | <u> </u>                                  |
| 13,40 6 18 2//// 0,82 1,15 0,3(<br>13,60 6 18 2/// 0,82 1,17 0,3(<br>13,80 6 18 2/// 0,82 1,18 0,3(                                                                   | 1,2 179 268<br>1,1 179 268<br>1,1 179 268   | 29<br>29<br>29             |                |                                                          |                                                          | = = =                                     |
| 14.00 6 22 2/// 0.82 1.20 0.30                                                                                                                                        | 1,1 179 269                                 | 29<br>29<br>32             | <br><br>       |                                                          | <br>                                                     | <u> </u>                                  |
| 14,40 7 35 4/:/: 0,83 1,23 0,39                                                                                                                                       | 1,3 207 310<br>1.5 233 350                  | 32<br>35                   | 28 31          | 35 38 25<br>35 38 25                                     | 26<br>26                                                 | 12 18 21<br>13 20 24                      |
| 14,80 9 45 4/:/: 0,85 1,27 0,41<br>15,00 8 2//// 0,86 1,29 0,40                                                                                                       | 1,7 258 387<br>1,5 234 351                  | 38<br>35                   | 28 31          | 35 38 25                                                 | 26                                                       | 15 23 27                                  |

CPT 3

2.0105-PG076

Riferimento: 121-2020

- committente : Geol. Marco Toschi - data : 07/12/2020

- lavoro : indagine geognostica - quota inizio : p.c.
 - località : ex caserma Curtatone Montanara - Pisa - falda :

- assist. cantiere : - data di emissione :

14/12/2020

- note : falda -1.18

CPT 4

2.0105-PG076

Riferimento: 121-2020

Geol. Marco Toschi - committente : - data : 07/12/2020 - lavoro: indagine geognostica - quota inizio: -0.4m da p.c. - falda :

ex caserma Curtatone Montanara - Pisa - località : - assist. cantiere :

- data di emissione :

14/12/2020 riporto superato in DPSH; falda -1.18

| - note :                                |                                  | riporto                 | o sup                | erato                        | in DF                                | PSH; f               | alda -               | 1.18              |                 |                |                      |                |                      |                            |                      |                                                          | 14/                     | 12/20                 | J20             |                        |
|-----------------------------------------|----------------------------------|-------------------------|----------------------|------------------------------|--------------------------------------|----------------------|----------------------|-------------------|-----------------|----------------|----------------------|----------------|----------------------|----------------------------|----------------------|----------------------------------------------------------|-------------------------|-----------------------|-----------------|------------------------|
|                                         |                                  |                         |                      |                              | NAT                                  | URA                  | COES                 | IVA               |                 |                |                      |                | NATU                 | JRA (                      | GRAI                 | NUL                                                      | ARE                     |                       |                 |                        |
| Prof.<br>m                              | qc qc/fs<br>kg/cm² (-)           | Natura<br>Litol.        | Y'<br>t/m³           | p'vo<br>kg/cm²               | Cu<br>kg/cm²                         | OCR<br>(-)           | Eu50<br>kg/c         | Eu25<br>:m²       | Mo<br>kg/cm²    | Dr<br>%        | ø1s<br>(°)           | ø2s<br>(°)     | ø3s<br>(°)           | ø4s<br>(°)                 | ødm<br>(°)           | ømy<br>(°)                                               | Amax/g<br>(-)           |                       | E'25<br>m² kg   | Mo<br>/cm²             |
| 0,20<br>0,40                            |                                  | ???<br>???              | 0,85<br>0,85         | 0,02<br>0,03                 |                                      |                      |                      |                   |                 |                |                      | <br>           |                      |                            |                      |                                                          |                         |                       |                 |                        |
| 0,60<br>0,80<br>1.00                    | 16 34<br>17 42<br>15 17          | 4/:/:<br>4/:/:<br>2//// | 0,90<br>0,91<br>0.95 | 0,05<br>0,07<br>0,09         | 0,70<br>0,72<br>0.67                 | 99,9<br>99,9<br>77,7 | 118<br>123<br>113    | 177<br>184<br>170 | 52<br>54<br>50  | 81<br>76       | 39<br>39             | 41<br>40<br>   | 43<br>42<br>         | 44<br>44<br>               | 42<br>41<br>         | 27<br>27                                                 | 0,194<br>0,177          | 27<br>28              | 40<br>43        | 48<br>51<br>           |
| 1,20<br>1,40                            | 14 21<br>19 26                   | 2////<br>2////          | 0,94<br>0,99         | 0,11<br>0,13                 | 0,64<br>0,78                         | 57,7<br>59,8         | 108<br>132           | 162<br>198        | 48<br>58        | <br><br>F0     |                      | <br>           |                      |                            |                      | <br>                                                     |                         | <br><br>07            |                 |                        |
| 1,60<br>1,80<br>2,00                    | 16 48<br>5 19<br>6 30            | 4/:/:<br>2////<br>4/:/: | 0,90<br>0,80<br>0,82 | 0,15<br>0,16<br>0,18         | 0,70<br>0,25<br>0,30                 | 44,3<br>10,8<br>12,1 | 118<br>43<br>51      | 177<br>64<br>77   | 52<br>25<br>29  | 56<br><br>17   | 36<br><br>30         | 38<br><br>33   | 40<br><br>36         | 42<br><br>39               | 38<br><br>31         | 27<br>26                                                 | 0,120<br><br>0,033      | 27<br><br>10          | 40<br><br>15    | 48<br><br>18           |
| 2,20<br>2,40<br>2,60                    | 6 18<br>5 15<br>7 26             | 2////<br>1***<br>2////  | 0,82<br>0,46<br>0,84 | 0,19<br>0,20<br>0,22         | 0,30<br>0,25<br>0,35                 | 10,8<br>8,1<br>11,2  | 51<br>11<br>59       | 77<br>17<br>89    | 29<br>8<br>32   |                |                      |                |                      |                            |                      |                                                          |                         |                       |                 | —<br>                  |
| 2,80<br>3,00                            | 8 24<br>6 15                     | 2////<br>1***           | 0,86<br>0,46         | 0,24<br>0,25                 | 0,40<br>0,30                         | 12,0<br>8,0          | 68<br>14             | 102<br>20         | 35<br>9         |                |                      |                |                      |                            |                      |                                                          |                         |                       |                 | <br>                   |
| 3,20<br>3,40<br>3,60                    | 8 24<br>8 30<br>11 14            | 2////<br>4/:/:<br>2//// | 0,86<br>0,84<br>0,91 | 0,26<br>0,28<br>0,30         | 0,40<br>0,40<br>0,54                 | 10,6<br>9,8<br>13,0  | 68<br>68<br>91       | 102<br>102<br>137 | 35<br>35<br>42  | 16             | 30                   | 33             | 36                   | 39                         | 30                   | 26                                                       | 0,031                   | 13                    | 20              | 24                     |
| 3,80<br>4,00<br>4,20                    | 20 50<br>17 20<br>20 150         | 4/:/:<br>2////<br>4/:/: | 0,93<br>0,97<br>0,93 | 0,32<br>0,34<br>0,36         | 0,80<br>0,72<br>0,80                 | 19,9<br>16,3<br>17,3 | 136<br>123<br>136    | 204<br>184<br>204 | 60<br>54<br>60  | 45<br><br>42   | 34<br><br>34         | 37<br><br>36   | 39<br><br>39         | 42<br><br>41               | 34<br><br>34         | 27<br><br>27                                             | 0,091<br><br>0,084      | 33<br><br>33          | 50<br><br>50    | 60<br>60 —             |
| 4,40<br>4,60                            | 19 18<br>11 10                   | 2////<br>2////          | 0,99<br>0,91         | 0,38<br>0,39                 | 0,78<br>0.54                         | 15,6<br>9.3          | 132<br>94            | 198<br>141        | 58<br>42        |                |                      |                |                      |                            |                      |                                                          |                         |                       |                 |                        |
| 4,80<br>5,00<br>5,20                    | 17 14<br>17 11<br>46 230         | 2////<br>2////<br>3:::: | 0,97<br>0,97<br>0,91 | 0,41<br>0,43<br>0,45         | 0,72<br>0,72                         | 12,7<br>11,9         | 123<br>123           | 184<br>184        | 54<br>54<br>    | <br><br>65     | <br><br>37           | 39             | <br><br>41           | 43                         | <br>37               | 31                                                       | <br>0,144               | <br><br>77            | 115             | 138 —                  |
| 5,40<br>5,60<br>5,80                    | 48 23<br>47 39<br>32 23          | 4/:/:<br>3::::<br>4/:/: | 1,01<br>0,91<br>0,97 | 0,47<br>0,49<br>0,51         | 1,60<br><br>1,07                     | 29,0<br><br>15,9     | 272<br><br>181       | 408<br><br>272    | 144<br><br>96   | 65<br>64<br>49 | 37<br>37<br>35       | 39<br>39<br>37 | 41<br>41<br>39       | 43<br>43<br>42             | 37<br>37<br>34       | 31<br>31<br>29                                           | 0,145<br>0,140<br>0,102 | 80<br>78<br>53        |                 | 144<br>141<br>96       |
| 6,00<br>6,20                            | 35 26<br>40 32                   | 4/:/:<br>3::::          | 0,98<br>0,90         | 0,53<br>0,55                 | 1,17                                 | 16,9                 | 198                  | 298               | 105             | 51<br>55       | 35<br>36             | 37<br>38       | 40<br>40             | 42<br>42                   | 35<br>35<br>35       | 29<br>30                                                 | 0,108<br>0,118          | 58<br>67              | 88<br>100       | 105<br>120 —           |
| 6,40<br>6,60<br>6,80                    | 41 26<br>42 39<br>39 18          | 4/:/:<br>3::::<br>4/:/: | 1,00<br>0,90<br>1,00 | 0,57<br>0,58<br>0,60         | 1,37<br><br>1,30                     | 18,9<br><br>16,4     | 232<br><br>221       | 349<br><br>332    | 123<br><br>117  | 55<br>55<br>52 | 36<br>36<br>35       | 38<br>38<br>37 | 40<br>40<br>40       | 42<br>42<br>42             | 35<br>35<br>35       | 29<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>31 | 0,118<br>0,118<br>0,109 | 68<br>70<br>65        | 105             | 123<br>126<br>117      |
| 7,00<br>7,20<br>7,40                    | 38 20<br>42 57<br>41 77          | 4/:/:<br>3::::<br>3:::: | 0,99<br>0,90<br>0,90 | 0,62<br>0,64<br>0,66         | 1,27                                 | 15,2<br>             | 215<br><br>          | 323               | 114<br><br>     | 50<br>53<br>51 | 35<br>35<br>35       | 37<br>38<br>37 | 40<br>40<br>40       | 42<br>42<br>42<br>42<br>42 | 34<br>35<br>34       | 30<br>30<br>30                                           | 0,105<br>0,112<br>0,108 | 63<br>70<br>68        | 105             | 114<br>126<br>123      |
| 7,60<br>7.80                            | 50 39<br>59 49<br>54 62          | 3::::<br>3::::          | 0,92<br>0,93<br>0,92 | 0,68<br>0.70                 | <br>                                 | <br><br>             |                      |                   | <br><br>        | 58<br>63<br>59 | 36<br>37<br>36       | 38<br>39<br>38 | 40<br>41             | 43<br>43<br>43             | 35<br>36<br>35       | 31<br>32<br>31                                           | 0,124<br>0,138<br>0,128 | 83<br>98<br>90        | 125<br>148      | 150<br>177             |
| 8,00<br>8,20<br>8,40                    | 16 1/                            | 3::::<br>2////<br>4/:/: | 0,96<br>0,97         | 0,72<br>0,73<br>0,75<br>0,77 | 0,70<br>1,07                         | 5,9<br>9,7           | 196<br>183           | 294<br>274        | 52<br>96        | 40             | 34<br>33             | 36             | 40<br><br>39<br>38   | 41                         |                      |                                                          | 0,079                   |                       | 80              | 162<br>96              |
| 8,60<br>8,80<br>9,00                    | 34 28                            | 4/:/:<br>4/:/:<br>3:::: | 0,97<br>0,98<br>0,95 | 0,77<br>0,79<br>0,81         | 1,07<br>1,13                         | 9,4<br>9,8           | 185<br>193           | 277<br>290        | 96<br>102       | 39<br>41<br>66 | 33<br>34<br>37<br>33 | 36<br>36<br>39 | 38<br>39<br>41       | 41<br>41<br>43             | 32<br>32<br>32<br>36 | 29<br>29<br>32                                           | 0,078<br>0,081<br>0,147 | 53<br>53<br>57<br>120 | 80<br>85<br>180 | 96<br>102<br>216       |
| 9,00<br>9,20<br>9,40                    | 72 45<br>28 26<br>23 14          | 4/:/:<br>4/:/:          | 0,96<br>0,94         | 0,83<br>0,85                 | 0,97<br>0,87                         | 7,6<br>6,4           | 203<br>220           | 304<br>329        | 84<br>69        | 66<br>33<br>25 | 32                   | 39<br>35<br>34 | 38<br>37             | 43<br>41<br>40             | 36<br>31<br>30       | 28<br>28                                                 | 0,064<br>0,049          | 120<br>47<br>38       | 70<br>58        | 84 <sup>——</sup><br>69 |
| 9,60<br>9,80<br>10,00                   | 23 14<br>32 13<br>30 20<br>36 17 | 4/:/:<br>4/:/:<br>4/:/: | 0,97<br>0,96<br>0,99 | 0,87<br>0,89<br>0,91         | 1,07<br>1,00<br>1,20                 | 8,1<br>7,3<br>8,9    | 208<br>220<br>215    | 312<br>330<br>323 | 96<br>90<br>108 | 36<br>33<br>39 | 33<br>33<br>33       | 36<br>35<br>36 | 38<br>38<br>38       | 41<br>41<br>41             | 31<br>31<br>32       | 29<br>29<br>30                                           | 0,071<br>0,065<br>0,078 | 53<br>50<br>60        | 80<br>75<br>90  | 96<br>90<br>108        |
| 10,20<br>10,40<br>10,60                 | 68 54<br>61 48<br>75 51          | 3::::<br>3::::<br>3:::: | 0,95<br>0,94<br>0,96 | 0,93<br>0,95<br>0,96         |                                      |                      |                      |                   |                 | 61<br>56<br>63 | 36<br>36<br>37       | 39<br>38<br>39 | 41<br>40<br>41       | 43<br>43<br>43             | 35<br>35<br>36       | 29<br>29<br>32<br>28<br>28<br>29<br>30<br>32<br>32<br>32 | 0,132<br>0,121<br>0,139 | 113<br>102<br>125     | 153             | 204 —<br>183<br>225    |
| 10,80<br>11,00                          | 40 26                            | 4/:/:<br>2////          | 1,00<br>0,82         | 0,98<br>1,00                 | 1,33<br>0,30                         | 9,2<br>1,4           | 234<br>176           | 351<br>264<br>265 | 120<br>29       | 41             | 34                   | 36             | 39                   | 41                         | 32                   | 30                                                       | 0,082                   | 67                    |                 | 120                    |
| 11,20<br>11,40<br>11,60                 | 5 11<br>5 9                      | 2////<br>1***<br>1***   | 0,82<br>0,46<br>0.46 | 1,02<br>1,03<br>1,04         | 0,30<br>0,25<br>0,25                 | 1,4<br>1,1<br>1,1    | 177<br>32<br>32      | 265<br>49<br>49   | 29<br>8<br>8    | <br><br>       |                      |                | <br><br>             |                            |                      |                                                          |                         |                       |                 | <br><br>               |
| 11,60<br>11,80<br><u>12,00</u><br>12,20 | 4 7<br>4 9<br>4 7                | 1***<br>1***<br>1***    | 0,46<br>0,46<br>0,46 | 1,05<br>1,05<br>1,06         | 0,25<br>0,20<br>0,20<br>0,20<br>0,20 | 0,8<br>0,8<br>0,8    | 32<br>26<br>26       | 39<br>39          | 6<br>6<br>6     |                |                      |                |                      |                            |                      |                                                          |                         |                       | <br>            | <br><br>               |
| 12,40<br>12,60                          | 4 12<br>5 12                     | 1***                    | 0,46<br>0,46         | 1,07<br>1,08                 | 0,20<br>0,25                         | 0,8<br>1,0           | 26<br>26<br>26<br>32 | 39<br>39<br>49    | 6<br>8          | <br>           |                      |                |                      |                            |                      |                                                          |                         |                       |                 | <br>                   |
| 12,80<br>13,00<br>13,20                 | 5 15<br>5 15<br>6 30             | 1***<br>1***<br>4/:/:   | 0,46<br>0,46<br>0.82 | 1,09<br>1,10<br>1,12         | 0,25<br>0,25<br>0,30                 | 1,0<br>1,0<br>1,2    | 33<br>33<br>178      | 49<br>49<br>267   | 8<br>8<br>29    | <br><br>       | <br>28               | <br><br>31     | <br>35               | 38                         | <br>25               | <br>26                                                   | <br><br>                | <br>10                | <br>15          | 18 —                   |
| 13,40<br>13,60                          | 9 27<br>7 15                     | 2////<br>1***           | 0,88<br>0,46         | 1,13<br>1,14                 | 0,45<br>0,35                         | 2,0<br>1,4           | 253<br>44            | 379<br>67         | 38<br>11        | <br><br>       |                      |                |                      |                            |                      |                                                          |                         |                       |                 |                        |
| 13,80<br>14,00<br>14,20                 | 6 45<br>8 40<br>9 45             | 4/:/:<br>4/:/:<br>4/:/: | 0,82<br>0,84<br>0,85 | 1,16<br>1,18<br>1,19         | 0,30<br>0,40<br>0,45                 | 1,2<br>1,6<br>1,9    | 179<br>231<br>255    | 268<br>347<br>383 | 29<br>35<br>38  |                | 28<br>28<br>28       | 31<br>31<br>31 | 35<br>35<br>35<br>35 | 38<br>38<br>38<br>38       | 25<br>25<br>25<br>25 | 26<br>26<br>26                                           |                         | 10<br>13<br>15        | 15<br>20<br>23  | 18<br>24<br>27         |
| 14,40<br>14,60<br>14,80                 | 10 50<br>9 27<br>7 26            | 4/:/:<br>2///<br>2///   | 0,86<br>0,88<br>0,84 | 1,21                         | 0,50<br>0,45<br>0,35                 | 2,1<br>1,8           | 278<br>257<br>207    | 417<br>385<br>310 | 40<br>38<br>32  | <br><br>       | 28<br>               | 31<br><br>     | 35<br><br>           | 38                         | 25<br>               | 26<br>                                                   |                         | 17<br><br>            | 25<br>          | 30<br>                 |
| 15,00                                   | 8                                | 2////                   | 0,86                 | 1,25<br>1,26                 | 0,40                                 | 1,3<br>1,5           | 233                  | 350               | 32<br>35        |                |                      |                |                      |                            |                      |                                                          |                         |                       |                 |                        |

CPT 5

2.0105-PG076

Riferimento: 121-2020

- committente : Geol. Marco Toschi - data : 07/12/2020 - lavoro : indagine geognostica - quota inizio : -0.4m da p.c.

- località : ex caserma Curtatone Montanara - Pisa - falda : - assist. cantiere : - data di emissione :

- data di emissione : 14/12/2020

- note : riporto superato in DPSH; falda -1.18

| П                                                                            | NATURA                                              |                                          |                         | NATU                    | JRA GRANUL                                   | ARE                                                       |
|------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------|-------------------------|-------------------------|----------------------------------------------|-----------------------------------------------------------|
| Prof. qc qc/fs Natura Y' p                                                   | <u>ן ווייאין אריאין                            </u> | Eu50 Eu25 Mo                             | Dr ø1s                  | ø2s ø3s                 | #A AUTA AUTA AUTA AUTA AUTA AUTA AUTA AU     |                                                           |
|                                                                              | cm² kg/cm² (-)<br>.02                               | kg/cm² kg/cm²                            | % (°)                   | (°) (°)                 | (°) (°) (°)                                  | (-) kg/cm² kg/cm²                                         |
| 0,40 ??? 0,85 0                                                              | 03<br>05 0,54 99,9                                  | 91 137 42                                | 69 38                   | 39 41                   | 43 40 26                                     | 0,155 18 28 33                                            |
| 1.00 18 25 2/// 0.98 0                                                       | ,07 0,64 99,9<br>,09 0,75 90,5<br>,11 0,72 67,6     | 108 162 48<br>128 191 56                 | 70 38<br>               | 40 42                   | 44 40 26                                     | 0,158 23 35 42                                            |
| 1,40 13 14 2//// 0,93 0                                                      | 11 0,72 67,6<br>13 0,60 44,3<br>14 0,25 13,4        | 123 184 54<br>103 154 47<br>10 15 8      |                         |                         |                                              |                                                           |
| 1,80 7 35 4/:/: 0,83 0<br>2,00 7 12 1*** 0,46 0                              | ,15 0,35 17,7<br>,16 0,35 16,5                      | 59 89 32<br>14 21 11                     | 26 32                   | 34 37                   | 40 33 26                                     | 0,051 12 18 21                                            |
| 2,20 8 40 4/:/: 0,84 0<br>2,40 9 7 2//// 0,88 0                              | ,18 0,40 17,2<br>,20 0,45 17,7                      | 68 102 35<br>77 115 38                   | 27 32                   | 35 37<br>               | 40 32 26                                     | 0,052 13 20 24                                            |
| 2.80 21 8 4/:/: 0.93 0                                                       | ,22 0,70 27,2<br>,23 0,82 30,3<br>,25 0,97 33,5     | 118 177 52<br>140 210 63<br>164 246 84   | 54 36<br>62 37          | 38 40<br>39 41          | 42 36 27<br>43 38 28                         | 0,114 35 53 63<br>0,135 47 70 84                          |
| 3,20 26 3 4/:/: 0,95 0<br>3,40 34 16 4/:/: 0,98 0                            | ,27 0,93 29,1<br>,29 1.13 34.3                      | 158 237 78<br>193 289 102                | 57 36<br>65 37          | 38 40<br>39 41          | 43 37 28<br>43 38 29                         | 0,124 43 65 78<br>0,144 57 85 102                         |
| 3.80 41 13 4/:/: 1.00 0                                                      | .33 1.37 36.9                                       | 204 306 108<br>232 349 123<br>148 221 69 | 68 38                   | 39 41<br>39 41<br>37 39 | 43 38 30                                     | 0,146 60 90 108<br>0,154 68 103 123<br>0,097 38 58 69     |
| 4,00 23 5 4/:/: 0,94 0<br>4,20 26 26 4/:/: 0,95 0<br>4,40 22 47 3:::: 0,86 0 | 35 0,87 19,5<br>37 0,93 19,9<br>39                  | 158 237 78                               | 47 35<br>50 35<br>43 34 | 37 39<br>37 40<br>36 39 | 12 35 28                                     | 0,104 43 65 78<br>0,087 37 55 66                          |
| 4,60 30 35 3:::: 0,88 0<br>4,80 33 55 3:::: 0,88 0                           | 40<br>42                                            |                                          | 53 35<br>55 36          | 38 40<br>38 40          | 41 34 28<br>42 35 29<br>42 36 29<br>43 37 30 | 0,111 50 75 90<br>0,117 55 83 99                          |
| 5,20 33 26 4/:/: 0,97 0                                                      | ,44<br>,46 1,10 18,7<br>,48                         | 187 281 99                               | 63 37<br>53 35<br>51 35 | 39 41<br>38 40<br>37 40 | 42 35 29                                     | 0,139 72 108 129<br>0,111 55 83 99<br>0,106 53 80 96      |
| 5,80 46 38 3:::: 0,91 0                                                      | 49<br>51                                            |                                          | 51 35<br>62 37          | 37 40<br>39 41          | 43 36 31                                     | 0,107 55 83 99<br>0,135 77 115 138                        |
| 6,20 61 83 3:::: 0,94 0                                                      | ,53<br>,55                                          |                                          | 70 38                   | 39 41<br>40 42<br>41 42 | 43 36 31<br>44 38 32                         | 0,135                                                     |
| 6,60 35 33 3:::: 0,89 0<br>6,80 35 66 3:::: 0,89 0                           | ,57<br>,59<br>,60                                   | <br><br>                                 | 77 39<br>49 35<br>48 35 | 41 42<br>37 39<br>37 39 | 44 39 33<br>42 34 29<br>42 34 29             | 0,181 130 195 234<br>0,101 58 88 105<br>0,100 58 88 105   |
|                                                                              | ,62 1,20 14,2<br>,64                                | 204 306 108                              | 48 35<br>51 35          | 37 39<br>37 40          | 42 34 30<br>42 34 30                         | 0,100 60 90 108<br>0,107 67 100 120                       |
| 7.60 46 115 3:::: 0.91 0                                                     | ,66<br>,68<br>,69                                   | <br><br>                                 | 40 34<br>55 36<br>44 34 | 36 39<br>38 40<br>37 39 | 41 32 29<br>42 35 31<br>42 33 29             | 0,079 48 73 87<br>0,116 77 115 138<br>0,089 57 85 102     |
| 8,00 35 52 3:::: 0,89 0<br>8,20 34 42 3:::: 0,89 0                           | ,71<br>,73                                          |                                          | 44 34<br>43 34          | 37 39<br>36 39          | 42 33 29<br>41 33 29                         | 0,090 58 88 105<br>0,086 57 85 102                        |
| 8,40 36 67 3:::: 0,89 0<br>8,60 59 74 3:::: 0,93 0                           | ,75<br>,77                                          |                                          | 44 34<br>60 36          | 37 39<br>38 41          | 42 33 30<br>43 36 32                         | 0,089 60 90 108<br>0,131 98 148 177                       |
| 9,00 40 46 3:::: 0,90 0                                                      | ,79<br>,80<br>,82                                   | <br><br>                                 | 63 37<br>46 34<br>44 34 | 39 41<br>37 39<br>36 39 | 43 36 32<br>42 33 30<br>41 33 30<br>41 32 29 | 0,139 108 163 195<br>0,094 67 100 120<br>0,088 63 95 114  |
| 9,40 34 28 4/:/: 0,98 0<br>9,60 46 27 4/:/: 1.01 0                           | ,84 1,13 9,1<br>,86 1,53 12,9                       | 200 300 102<br>261 391 138               | 39 33<br>49 35          | 36 38<br>37 39          | 41 32 29                                     | 0,078 57 85 102<br>0,101 77 115 138                       |
| 10,00 44 73 3:::: 0,91 0                                                     | ,88 1,33 10,5<br>,90<br>,92                         | 227 340 120<br><br>                      | 44 34<br>46 34<br>62 37 | 36 39<br>37 39<br>39 41 | 42 33 31<br>41 33 30<br>42 33 31<br>43 36 32 | 0,088 67 100 120<br>0,095 73 110 132<br>0,137 118 178 213 |
| 10,40 68 85 3:::: 0,95 0                                                     | .94<br>.96                                          |                                          | 60 36<br>49 35          | 38 41<br>37 39          | 43 35 32<br>42 33 31                         | 0,131 113 170 204<br>0,102 83 125 150                     |
| 11,00 30 11 4/:/: 0,96 0                                                     | ,98 1,17 7,9<br>,99 1,00 6,3<br>,01 0,40 2,0        | 235 353 105<br>259 388 90<br>225 337 35  | 37 33<br>31 32          | 36 38<br>35 38          | 41 31 29<br>40 30 29                         | 0,072 58 88 105<br>0,059 50 75 90                         |
| 11,40 8 13 2/// 0,86 1                                                       | 03 0.40 1.9                                         | 225 337 35<br>226 338 35<br>247 371 38   |                         | <br><br>                |                                              | <br>                                                      |
| 11,80 8 17 2/// 0,86 1<br>12,00 9 27 2/// 0,88 1                             | ,06 0,40 1,8<br>,08 0,45 2,1                        | 227 341 35<br>250 374 38                 |                         |                         |                                              |                                                           |
| 12,40 9 22 2/// 0,88 1                                                       | ,10 0,40 1,8<br>,12 0,45 2,0<br>,13 0,50 2,3        | 228 343 35<br>252 377 38<br>273 409 40   | 28<br>                  | 31 35<br>               | 38 25 26                                     | 13 20 24 —<br>                                            |
| 12,80 7 17 2/// 0,84 1<br>13,00 6 15 1*** 0,46 1                             | ,15 0,35 1,4<br>.16 0.30 1,2                        | 205 308 32<br>39 58 9                    |                         |                         |                                              |                                                           |
| 13,20 8 20 2/// 0,86 1<br>13,40 9 15 2/// 0,88 1                             | .19 0.45 1.9                                        | 231 347 35<br>255 383 38<br>179 269 29   |                         | <br>                    | <br><br>                                     |                                                           |
| 14.00 8 20 2/// 0.86 1                                                       | ,22 0,25 0,9<br>.24 0.40 1.5                        | 179 269 29<br>33 49 8<br>233 349 35      | <br>                    | <br>                    |                                              | <br><br>                                                  |
| 14,20 6 18 2/// 0,82 1<br>14,40 8 30 4/:/: 0,84 1                            | ,25 0,30 1,1<br>,27 0,40 1,5                        | 180 269 29<br>234 350 35                 | 28                      | 31 35                   | 38 25 26                                     | 13 20 24                                                  |
| 14,80 6 18 2/// 0,82 1                                                       | 29 0,35 1,2<br>30 0,30 1,0<br>32 0,30 1,0           | 208 311 32<br>180 270 29<br>180 270 29   | <br>                    | <br>                    |                                              | <br><br>                                                  |

**ELABORAZIONE INDAGINE MASW** 

Geognostica

Monitoraggio idrogeologico



Geofisica

Indagini ambientali

**Committente: Geol. Marco Toschi** 

Località d'indagine: ex caserma Curtatone Montanara - Pisa

data: 07 / 12 / 2020



indagine: M.A.S.W.

strumentazione: Ambrogeo Echo 12/24 2002 software di acquisizione: Ambrogeo v. 7.1.1 Segy software di elaborazione: WinMASW 4.1 std per la geoLUK s.r.l.,

l'Amministratore

GEOGNOSTICA E GEOFISICA

www.geoluk.com info@geoluk.com

## INDICE

| 1. Premessa                                                            | .3 |
|------------------------------------------------------------------------|----|
| 1.1. Introduzione al metodo                                            | .3 |
| 2. Acquisizione                                                        | .4 |
| 2.1.1. Strumentazione impiegata                                        | .4 |
| 3. Utilizzo del programma Winmasw                                      | .5 |
| 5. Ubicazione dell'area indagata e coordinate delle indagini in WGS84. | .8 |

## ALLEGATI e FIGURE

Sismogramma acquisito in campagna

Spettro di velocità e curva di dispersione e picking

Profilo verticale delle Vs

Esempio di modello stratigrafico

Ubicazione dell'area indagata (fuori scala)

#### 1. Premessa

Ai fini della definizione dell'azione sismica di progetto del sito in esame, ubicato presso la ex caserma Curtatone – Montanara, all'interno del quartiere San Martino a Pisa (PI), è stata effettuata per conto del Geol. Marco Toschi una serie di acquisizioni con la metodologia M.A.S.W., utili a definire il profilo superficiale verticale della  $V_{\rm S}$  (velocità di propagazione delle onde di taglio).

#### 1.1. Introduzione al metodo

La Metodologia M.A.S.W. (Multichannel Analysis of Surface Waves) adottata per il presente lavoro è una tecnica di investigazione sismica non invasiva del sottosuolo di tipo attivo, presentata nel 1999 in seguito agli studi effettuati dal Kansas Geological Survey (Park et al., 1999). Attraverso l'analisi delle onde superficiali di Raylegh questa tecnica mira a ricostruire un profilo sismostratigrafico in onde di taglio lungo la verticale al di sotto dello stendimento (profilo Vs-z).

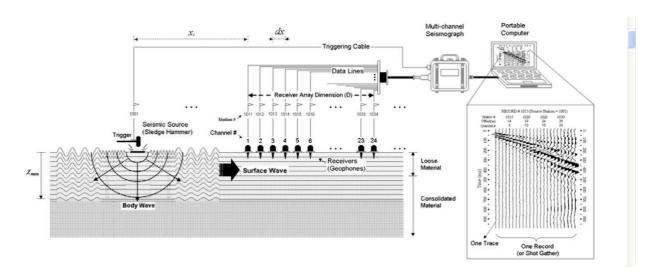



Figura 1. Illustrazione della tecnica di indagine eseguita (SurfSeis – Active Masw, 2006)

La propagazione delle onde nel caso di mezzi stratificati e trasversalmente isotropi avviene in maniera diversa rispetto ai mezzi omogenei; non esiste più una unica velocità ma ogni frequenza è caratterizzata da una diversa velocità di propagazione a sua volta legata alle varie lunghezze d'onda (fenomeno detto della dispersione in frequenza). Queste interessano il terreno a diverse profondità e risultano influenzate dalle caratteristiche elastiche, appunto variabili con la profondità. Le lunghezze d'onda più grandi corrispondono alle frequenze più basse e vanno ad

interessare il terreno più in profondità; al contrario le lunghezze d'onda più piccole, poiché sono associate alle frequenze più alte, rimangono nelle immediate vicinanze della superficie.

Come tutte le tecniche di investigazione del sottosuolo, anche la M.A.S.W. presenta dei limiti nella sua applicabilità e dei vantaggi che devono essere tenuti ben presente nel momento in cui si pianifica e commissiona una campagna di investigazione geofisica. Brevemente i principali limiti della metodologia sono la necessità di operare in condizioni geologiche particolari (strati circa piano paralleli e lateralmente isotropi), la necessità di disporre di una taratura stratigrafica di riferimento fino alla profondità di interesse per ottimizzare il modello finale e la necessità di effettuare lo stendimento su superfici che non presentino brusche irregolarità morfologiche (salti, scalini...)

Per contro, i principali vantaggi della metodologia sono per esempio, a parità di profondità di investigazione, la possibilità di lavorare in ambienti con ingombri limitati, oppure al fine di poter ottimizzare il modello sismostratigrafico finale la possibilità di intervenire attivamente nel software di elaborazione in virtù delle conoscenze geologiche/geotecniche dell'area indagata. Inoltre, la tecnica M.A.S.W riesce, come ad es. il downhole, a rilevare il fenomeno dell'inversione di velocità.

## 2. Acquisizione

## 2.1.1. Strumentazione impiegata

### Hardware

L'acquisizione è avvenuta tramite sismografo a 24 canali modello "Echo 12-24" (della *Ambrogeo* di Piacenza), collegato a geofoni verticali a frequenza propria di 4.5Hz.

Di seguito vengono brevemente elencate le caratteristiche tecniche del sismografo:

- Registrazione a 24 canali
- Impedenza di ingresso 20 Kohm
- Range dinamico: 93 dB
- Conversione A/D a 16 bit
- Intervallo di campionamento selezionabile a: 25, 50, 100, 200, 400, 800, 1000, 30000 ms
- Guadagno 10 dB 100 dB, passo 1 dB
- Tensione di saturazione +/- 2,3 V
- Distorsione 0,01%
- Campionamento 130 ms
- Filtro passa basso da 50 a 950 Hz, passo 1 Hz
- Alimentazione 12V

### Software

Per la registrazione in campagna del segnale sismico è stato utilizzato il software Ambrogeo v 7.1.1 Segy (della *Ambroge*o di Piacenza) mentre, per le analisi dei dati acquisiti, è stato adottato il software *winMASW* 4.1.1 Std (della *Eliosoft* di Udine).

## 3. Utilizzo del programma winMASW

Al fine di fornire un <u>supporto interpretativo</u> dei dati acquisiti in campagna segue un esempio di elaborazione attraverso la determinazione dello spettro di velocità, identificazione curve di dispersione, inversione/modellazione di queste ultime, al fine di ricostruire un profilo verticale di massima della velocità delle onde di taglio (V<sub>S</sub>) per stimare il valore del parametro Vs equivalente utile alla classificazione del terreno (determinazione della categoria di sottosuolo).

Resta tuttavia a carico del Geologo la validazione della proposta interpretativa in base alle proprie conoscenze in materia sismica e geologica del sito in esame.

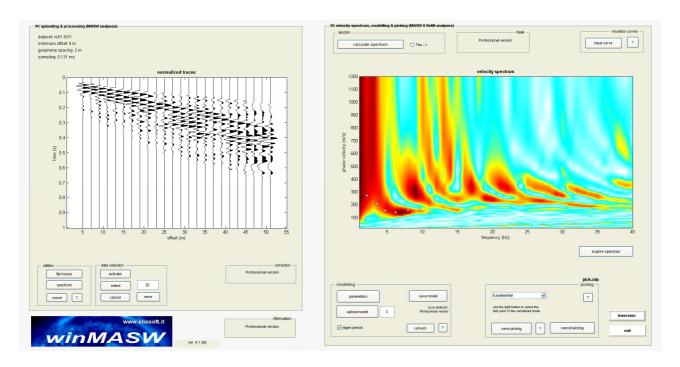
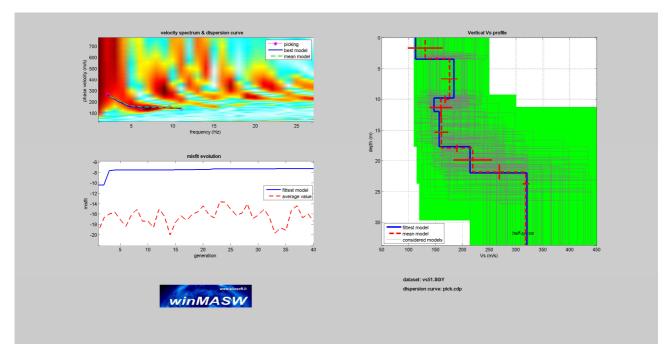




Fig. 2. Sulla sinistra i dati di campagna e, sulla destra, lo spettro di velocità calcolato.



**Fig. 3.** Risultati dell'inversione della curva di dispersione determinata tramite l'analisi dei dati. In alto a sinistra: spettro osservato, curve di dispersione "*piccate*" e curve del modello individuato dall'inversione. Sulla destra il profilo verticale  $V_S$  identificato. In basso a sinistra l'evolversi del modello al passare delle "generazioni" (l'algoritmo utilizzato per l'inversione delle curve di dispersione appartiene alla classe degli *Algoritmi Genetici* – Dal Moro et al., 2007).

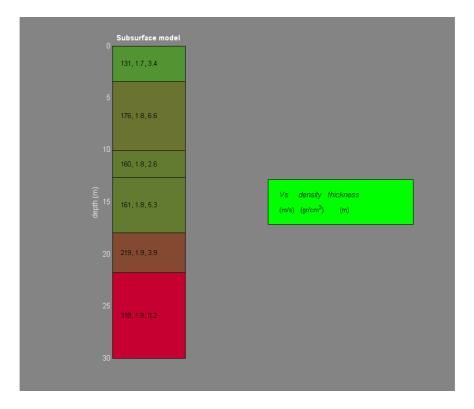



Fig. 4. Colonnina sismo-stratigrafica di massima del sito. Per ciascun strato indicate VS, densità (stimate) e spessori.

Dall'analisi della dispersione delle onde di Rayleigh, a partire dai dati di sismica attiva raccolti con la tecnica M.A.S.W. e in riferimento alla ricostruzione stratigrafica (modello di partenza) ricavabile dalle informazioni/indagini puntuali a taratura messe a disposizione dalla Committenza, viene proposto un profilo sismostratigrafico della  $V_{\rm S}$  monodimensionale al di sotto dello stendimento effettuato.

Sulla base dei dati disponibili viene pertanto calcolata la  $V_{S,eq}$  - a partire dal piano campagna attuale - secondo le modalità di calcolo indicate nelle *Norme Tecniche per le Costruzioni* 2018:

$$V_{S,eq} = \frac{H}{\sum\limits_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

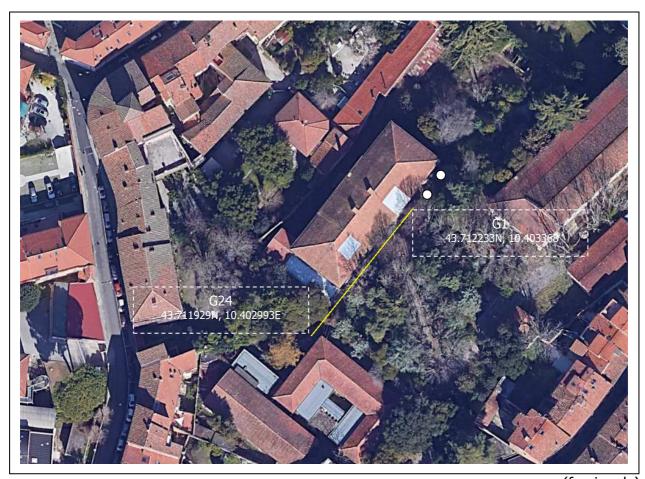
con:

H

hi spessore dell'i-esimo strato;

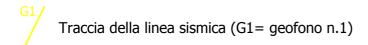
Vs.i velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;


profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

$$V_{S,eq} = 192 \text{ m/s}$$

Tuttavia si ricorda che, sempre in ottemperanza alla Normativa, per la determinazione corretta della  $V_{S,eq}$  il Geologo deve far riferimento alla profondità di imposta delle fondazioni previste nel progetto:


- per le fondazioni superficiali, tale profondità è riferita al piano di imposta delle stesse;
- per le fondazioni su pali è riferita alla testa dei pali;
- Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera;
- Per muri di sostegno di terrapieni, la profondità è riferita al piano di imposta della fondazione.

# 5. Ubicazione dell'area indagata e coordinate delle indagini in WGS84



(fuori scala)

# Legenda:



Shots eseguiti

ELABORAZIONE ANALISI DI RUMORE (HVSR)

Geognostica

Monitoraggio idrogeologico



Geofisica

Indagini ambientali

Committente: Geol. Marco Toschi

Località d'indagine: ex caserma Curtatone Montanara - Pisa

data: 07 / 12 / 2020



indagine: HVSR

strumentazione: Echotromo

software di elaborazione: Software HV 1.0.0.2

Geopsy

GeoExplorerHVSR

per la geoLUK s.r.l., l'Amministratore

GEOGNOSTICA E GEOFISICA
www.geoluk.com info@geoluk.com

# INDICE

| 1. | Descrizione dell'indagine | .3  |
|----|---------------------------|-----|
| 2. | Segnale                   | .3  |
| 3. | Curva HVSR e elaborati    | .4  |
| 4. | Conclusioni               | .6  |
| 5. | Specifiche strumentali    | . 7 |
| 6. | Ubicazione                | 8   |

# ALLEGATI e FIGURE

| Fig.1    | Dati sperimentali              |
|----------|--------------------------------|
| Fig.2    | Curva HVSR                     |
| Fig.3    | Curva delle singole componenti |
| Fig.4    | Stazionarietà                  |
| Fig.5    | Direzionalità                  |
| Fig.6    | Ubicazione                     |
| Tabella1 | Criteri di ammissibilità       |
| Tabella2 | Classe di qualità              |

## 1. Descrizione dell'indagine

L'area oggetto di indagine, morfologicamente collocata in pianura alluvionale, è ubicata all'interno del centro storico di Pisa, quartiere San Martino, all'interno dell'area ex caserma militare Curtatone Montanara. L'area risulta essere caratterizzata principalmente dalla presenza di sorgenti di rumore di tipo transiente, provenienti principalmente dal traffico veicolare presente lungo le strade circostanti.

Il tromografo, correttamente orientato nella direzione del nord geografico, è stato posizionato per livellamento al suolo mediante tre spike regolabili a 120°, avendo cura di attendere il tempo necessario affinchè lo strumento fosse stabile.

La posizione del sito di registrazione è stata scelta considerando la opportuna distanza dai fabbricati circostanti, oltre che dalle piante ad alto fusto presenti. Nonostante la giornata sia stata caratterizzata da discontinui rovesci e raffiche di vento si segnala che l'acquisizione è stata eseguita in un momento favorevole di assenza di pioggia e vento.

Per la determinazione della curva HVSR è stata realizzata n.1 registrazione, della durata di 30 minuti, ovvero 1800 secondi, adottando una frequenza di campionamento pari a 200 Hz.

In fase di lettura a monitor delle tracce registrate, si conferma la bontà del segnale per il mantenimento della verticalità del sensore e pertanto si ritiene significativo ai fini della determinazione della definizione della curva HVSR per l'area indagata.

## 2. Segnale

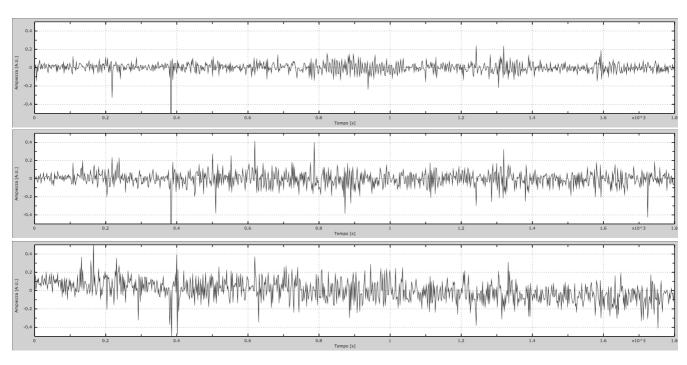



Fig. 1: Reg.1: Dati sperimentali in direzione Z (alto), N-S (centro) e E-W (basso).

# 3. Curva HVSR e elaborati

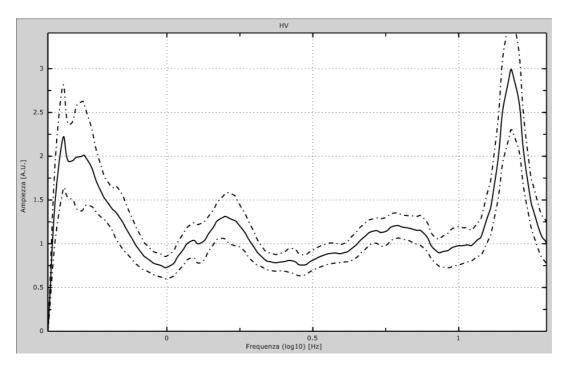



Fig. 2: Reg.1: Curva HVSR

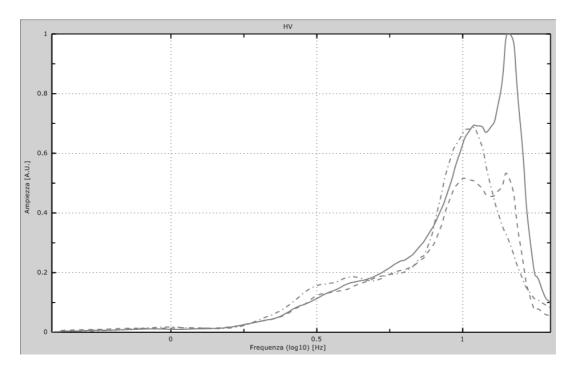



Fig. 3: Reg.1: Spettri delle singole componenti: Z (tratto-punto); N-S (linea continua); E-O (tratteggiato).

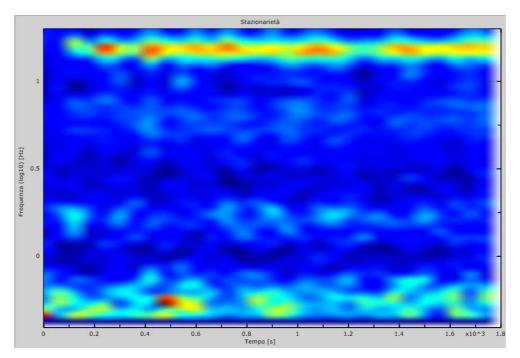



Fig. 4: Reg.1: Stazionarietà

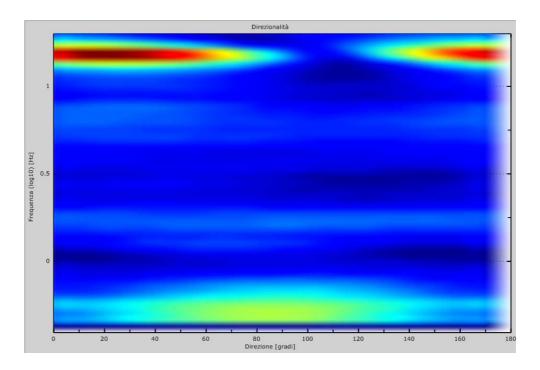



Fig. 5: Reg.1: Direzionalità

Relazione misure HVSR......pag. 5

## 4. Conclusioni

ANALISI CURVA H/V (Fig.2): i picchi chiaramente identificabili e aventi fattore di amplificazione maggiore di 2 sono:

picco n.1: 15.05 Hzpicco n.2: 0.44 Hz

Dall'analisi degli spettri delle singole componenti nello spettro di Fourier di Fig. 3 si nota che il picco numero 1 in realtà sembra esser eil risultato di due massimi assoluti e di un massimo relativo (flesso), mentre il picco numero 2 sembra non avere una natura antropica, per cui è da ritenersi con buona certezza, di origine naturale.

Frequenza di picco della curva H/V sperimentale [Hz] principale = 0.44

Della frequenza anzidetta si riportano i criteri di ammissibilità del picco, che presenta amplificazione 2.23. Pertanto:

| Criterio 1 | OK |
|------------|----|
| Criterio 2 | OK |
| Criterio 3 | ОК |
| Criterio 4 | ОК |
| Criterio 5 | ОК |
| Criterio 6 | ОК |
| Criterio 7 | NO |

Tabella 1: Reg.1: Criteri di ammissibilità (vedasi manuale Software HVSR)

Classe di Qualità: A

| Relazione misure HVSRpa | ιg. | 6 |
|-------------------------|-----|---|
|-------------------------|-----|---|

| CLASSE A            | (H/V affidabile, può essere utilizzata anche da sola)                                                  |                                                                                                                                                                      |               |              |             |             |                 |             |               |               |            |            |   |      |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|-------------|-------------|-----------------|-------------|---------------|---------------|------------|------------|---|------|--|--|
|                     | 1)-La forma                                                                                            | dell'H/V                                                                                                                                                             | nell'inter    | vallo di fre | quenze di   | interesse   | rimane sta      | zionaria pe | r almeno i    | il 30% della  | durata de  | lla misura | ; |      |  |  |
| <i>;</i> =l         | 2)-le variaz                                                                                           | 2)-le variazioni azimutali di ampiezza non superano il 30% del massimo;                                                                                              |               |              |             |             |                 |             |               |               |            |            |   |      |  |  |
| condizioni          | 3)-assenza                                                                                             | 3)-assenza di disturbi elettromagnetici nella banda di frequenza di interesse;                                                                                       |               |              |             |             |                 |             |               |               |            |            |   |      |  |  |
| ipu                 | 4)-i massin                                                                                            | 4)-i massimi sono caratterizzati da una diminuzione localizzata dello spettro della componente verticale;                                                            |               |              |             |             |                 |             |               |               |            |            |   |      |  |  |
| 8                   | 5)-i primi 3 criteri SESAME per una curva H/V attendibile sono verificati;                             |                                                                                                                                                                      |               |              |             |             |                 |             |               |               |            |            |   |      |  |  |
|                     | 6)-durata d                                                                                            | 5)-durata della misura di almeno 15-20 minuti.                                                                                                                       |               |              |             |             |                 |             |               |               |            |            |   |      |  |  |
| eccezione:          |                                                                                                        |                                                                                                                                                                      |               |              |             |             |                 |             |               |               |            |            |   |      |  |  |
|                     | nel caso di                                                                                            | nel caso di assenza di contrasti di impedenza sufficientemente marcati, la condizione 5 non sarà soddisfatta anche se la misura è affidabile (H/V tipo 2, v. sotto). |               |              |             |             |                 |             |               |               |            |            |   |      |  |  |
|                     |                                                                                                        |                                                                                                                                                                      |               |              |             |             |                 |             |               |               |            |            |   |      |  |  |
| CLASSE B            | (H/V da "in                                                                                            | terpretar                                                                                                                                                            | e": va utili  | zzata con c  | autela e so | olo se coer | ente con a      | ltre misure | vicine)       |               | -          |            |   |      |  |  |
| condizione:         | Almeno un                                                                                              | a delle 6                                                                                                                                                            | condizioni    | della class  | se A non è  | soddisfatta | a (a meno d     | he non si i | rientri nell  | 'eccezione    | sopra cita | ta)        |   |      |  |  |
|                     |                                                                                                        |                                                                                                                                                                      |               |              |             |             |                 |             |               |               |            |            |   |      |  |  |
| CLASSE C            | (H/V scade                                                                                             | nte e di d                                                                                                                                                           | ifficile inte | erpretazio   | ne: non va  | utilizzata) | ·               | ·           | ·             |               | -          | •          |   |      |  |  |
| condizioni:         | 1)-Misura o                                                                                            | 1)-Misura di tipo B con curva H/V che mostra ampiezza crescente al diminuire della frequenza (deriva) indice di movimento dello strumento durante la misura;         |               |              |             |             |                 |             |               |               |            |            |   | ura; |  |  |
|                     | 2)-misura di tipo B con presenza di rumore elettromagnetico nell'intervallo di frequenze di interesse. |                                                                                                                                                                      |               |              |             |             |                 |             |               |               |            |            |   |      |  |  |
| corraizioni.        | 2)-misura c                                                                                            | li tipo B co                                                                                                                                                         | on presenz    | za di rumoi  | re elettron | iagnetico i | icii iiiicci vi |             | active at the | itticitation. |            |            |   |      |  |  |
| <u>condizioni.</u>  | 2)-misura c                                                                                            | li tipo B c                                                                                                                                                          | on presenz    | za di rumo.  | re elettron | lagiletico  |                 | l l         |               | iteresse.     |            |            |   |      |  |  |
| Per le classi A e E |                                                                                                        |                                                                                                                                                                      |               |              |             | Ĺ           |                 |             |               | literesse.    |            |            |   |      |  |  |
| Per le classi A e E |                                                                                                        | inoltre de                                                                                                                                                           | finire le se  | guenti due   | sottoclass  | i:          |                 |             |               | letesse.      |            |            |   |      |  |  |

Tabella 2: Tabella della classe di qualità

Si suggerisce tuttavia il confronto di coerenza con altre misure disponibili vicine, per escludere la possibilità di "inquinamento" del segnale da parte di disturbi elettromagnetici vicini alla banda di frequenza di interesse non rilevati dalla presente registrazione.

# 5. Specifiche strumentali

Specifiche tecniche del tromografo Echotromo:

- Number of channels: 3 with differential input
- Input impedance: 47 Kohm
- Noise: 0,4 uV 1KHz sample frequency
- Max Input voltage: 1Vpp
- AD convertion: 24 bit
- Sample frequency: 50Hz, 100 Hz, 200 Hz

Relazione misure HVSR......pag. 7

Data storage: Internal flash disk 2GB (minimum 1GB)

Recording format: SAF (SESAME ASCII Format)

• Power supply: 9,6Volt Ni Mh rechargeable battery

Power autonomy: 6 hours

IP Grade: IP 40

• Operating temperature: -25 / 70°C

• Gain of signal input: 1,2,4,8,16,32,64

• Max recording time: ≈ 2,5 hours

## 6. Ubicazione e coordinate in WGS84°



Fig. 6: Ubicazione e coordinate in WGS84°

CERTIFICAZIONI SONDAGGIO GEOGNOSTICO



Autorizzazione Ministero delle Infrastrutture e Trasporti ad effettuare e certificare prove geotecniche sui terreni n 5021 del 24 maggio 2011

#### Int. Certificati:

| Geologo | <b>Toschi</b> | Marco |  |
|---------|---------------|-------|--|
|         |               |       |  |

| Cantiere:<br>Sondaggio | via Giordano E | Bruno<br>Metodo perfor.: | Località:<br>Sondaggio |      | a<br>arotaggio continuo m. 20,0, a | a distruzion | ne m.   | 11,01            | Diamm. (mm)  | 16/04/2021<br>:101/127 |
|------------------------|----------------|--------------------------|------------------------|------|------------------------------------|--------------|---------|------------------|--------------|------------------------|
|                        |                |                          |                        |      |                                    |              | 11 pres | ente certificato | e composto d | a n. 5 pagine          |
|                        |                | SON                      | DAGGI                  | (O   | GEOGNOSTICO                        |              |         | $\boxtimes$      |              |                        |
|                        | Norm           | a di riferime            | nto: racco             | omai | ndazioni AGI 1977.                 |              |         |                  |              |                        |

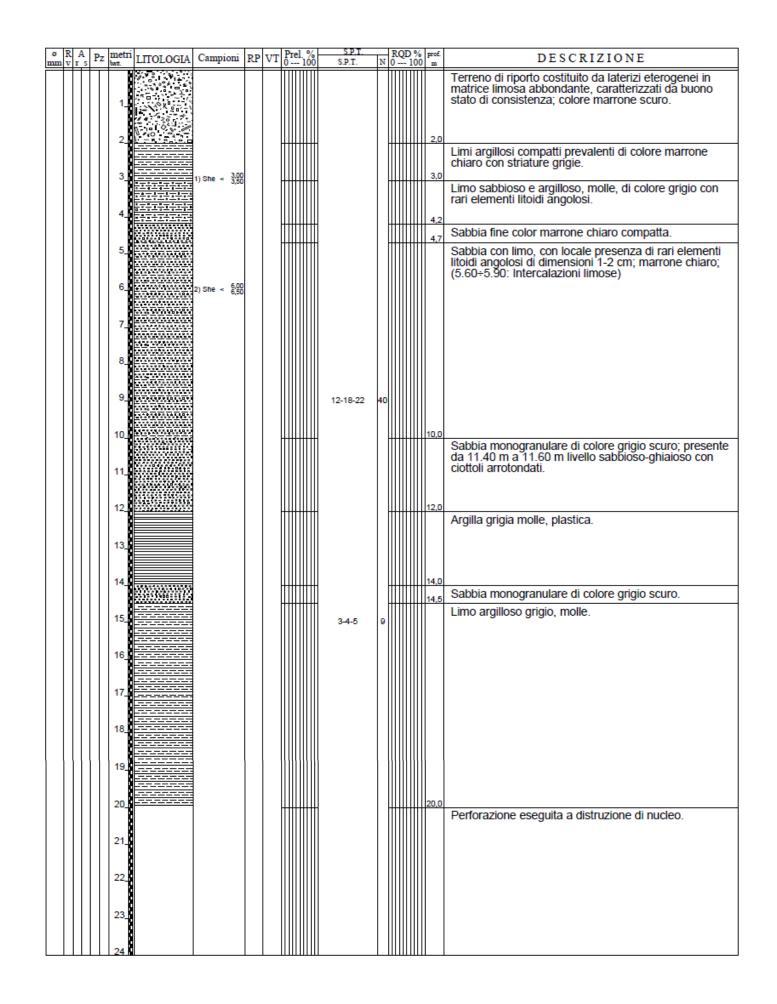
Verbale di accettazione n. <u>065/2021</u> Del. <u>16/04/2021</u>

Deviazione dalla norma: Nessuna

Certificato di prova n. <u>195/2021</u> del. <u>28/06/2021</u>

## CARATTERISTICHE DEL SISTEMA

| Perforatrice: Sonda IPC DRILL 65                         | 0                                          |                                                                                                          |
|----------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                                          | n numero di giri massimi di 28             | ostituito da un motore di 315 cm³ che consente<br>19 r.p.m. Il gruppo morsa-svitatore, una forza<br>uNm. |
| Diametro perforazione φ: 10  Diametro rivestimento φ: 12 | <del></del>                                |                                                                                                          |
| Sistema di perforazione:                                 | Carotaggio continuo  Distruzione di nucleo |                                                                                                          |




Autorizzazione Ministero delle Infrastrutture e Trasporti ad effettuare e certificare prove geotecniche sui terreni n 5021 del 24 maggio 2011

# Int. Certificati:

| Geologo Toschi Marco |   |  |
|----------------------|---|--|
|                      | _ |  |

| Cantiere: via Giordano Bruno    | Località: <u>Pisa</u>        | Data inizio: 15/04/2021 Data fine: 1            | 6/04/2021 |
|---------------------------------|------------------------------|-------------------------------------------------|-----------|
| Sondaggio n.: 1 Metodo perfor.: | Sondaggio a carotaggio conti | nuo m. 20,0, a distruzione m. 11,0 Diamm. (mm): | 101/127   |



| She = Shelby Den = Denison      | Osl = Osterberg |
|---------------------------------|-----------------|
| Ar = Livello acqua rinvenuta    |                 |
| As = Livello acqua stabilizzata |                 |
| P.z. = Piezometro               |                 |
| Rp = Penetrometro tascabile     |                 |
| VT = Vane Test (kg/cmg) may.    | residuo.        |

| As = Livello acqua stabilizzata       |  |
|---------------------------------------|--|
| P.z. = Piezometro                     |  |
| Rp = Penetrometro tascabile           |  |
| V.T. = Vane Test (kg/cmq) max-residuo |  |
| S.P.T. = Standard Penetration Test    |  |
| N = Nspt                              |  |
| R.Q.D. = Rock Quality Designation     |  |

|                                               | Riporto          |
|-----------------------------------------------|------------------|
| oh. ° ⊘oh. °<br>° ∕ oh. ° ⊘oh<br>° ⊘oh. ° ⊘oh | Terreno vegetale |
|                                               | Argilla          |

| Limo             |  |
|------------------|--|
| Sabbia           |  |
| Ghiaia, ciottoli |  |

| NOTE: |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
|       |  |  |



Autorizzazione Ministero delle Infrastrutture e Trasporti ad effettuare e certificare prove geotecniche sui terreni n 5021 del 24 maggio 2011

## Int. Certificati:

| Geologo | Toschi Marco  |  |
|---------|---------------|--|
| Geologo | TOSCIII Marco |  |

| Cantiere: | via Giore | dano Brun | .0             | Località: | Pisa     |                              | Data inizio: | 15/04/2021 | Data fine:   | 16/04/2021 |
|-----------|-----------|-----------|----------------|-----------|----------|------------------------------|--------------|------------|--------------|------------|
| Sondaggio | n.:       | 1 Me      | etodo perfor.: | Sondaggio | a carot: | aggio continuo m. 200 a disi | muzione m    | 11 0 E     | Diamm. (mm): | : 101/127  |

| m | R<br>m v | A<br>rs | Pz | metri<br>batt. | LITOLOGIA | Campioni | RP | VT | Prel. %<br>0 100 | S.P.T.<br>S.P.T. | N | RÇ<br>0 | D 9 | % P | rof.<br>m | DESCRIZIONE                                    |
|---|----------|---------|----|----------------|-----------|----------|----|----|------------------|------------------|---|---------|-----|-----|-----------|------------------------------------------------|
|   |          |         |    | 25_            |           |          |    |    |                  |                  |   |         |     |     |           | Perforazione eseguita a distruzione di nucleo. |
|   |          |         |    | 26_            |           |          |    |    |                  |                  |   |         |     |     |           |                                                |
|   |          |         |    | 27_            |           |          |    |    |                  |                  |   |         |     |     |           |                                                |
|   |          |         |    | 28_            |           |          |    |    |                  |                  |   |         |     |     |           |                                                |
|   |          |         |    | 29             |           |          |    |    |                  |                  |   |         |     |     |           |                                                |
|   |          |         |    | 30_            |           |          |    |    |                  |                  |   |         |     |     |           |                                                |
|   |          |         |    | 31             |           |          |    |    |                  |                  |   |         |     | 3   | 1.0       |                                                |

Installato tubo in PVC, diametro 80 mm, per prova sismica in foro di tipo down hole.

| at a state of the |                |                  |           |                  |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|-----------|------------------|-------|
| She = Shelby Den = Denison Osl = Osterberg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V22/1/2        |                  |           |                  |       |
| Ar = Livello acqua rinvenuta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 医经组            | Riporto          |           | Limo             | NOTE: |
| As = Livello acqua stabilizzata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5210 - LC (20) |                  |           |                  | _     |
| P.z. = Piezometro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | Terreno vegetale |           | Sabbia           |       |
| Rp = Penetrometro tascabile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | Terremo vegetale |           | Sauoia           |       |
| V.T. = Vane Test (kg/cmq) max-residuo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | A :11 -          |           | Chi-ii-u-ii      |       |
| S.P.T. = Standard Penetration Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | Argilla          | 350440233 | Ghiaia, ciottoli |       |
| N = Nspt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                  |           |                  |       |
| R.Q.D. = Rock Quality Designation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                  |           |                  |       |



Autorizzazione Ministero delle Infrastrutture e Trasporti ad effettuare e certificare prove geotecniche sui terreni n 5021 del 24 maggio 2011

#### Int. Certificati:

Geologo Toschi Marco

Cantiere: via Giordano Bruno Località: Pisa Data inizio: 15/04/2021 Data fine: 16/04/2021

Sondaggio n.: 1 Metodo perfor.: Sondaggio a carotaggio continuo m. 20,0, a distruzione m. 11,0 Diamm. (mm): 101/127

## DOCUMENTAZIONE FOTOGRAFICA CAROTE DI SONDAGGIO



Cassetta n. 1: da 0,0 m a - 5,0 m



Cassetta n. 2: da - 5,0 m a - 10,0 m



Cassetta n. 3: da - 10,0 m a - 15,0 m



Cassetta n. 4: da - 15,0 m a - 20,0 m



Autorizzazione Ministero delle Infrastrutture e Trasporti ad effettuare e certificare prove geotecniche sui terreni n 5021 del 24 maggio 2011

## Int. Certificati:

| Geolo | g | T o | oschi' | Marco |
|-------|---|-----|--------|-------|
|       |   |     |        |       |

| Cantiere: | via Gio | rdano | Bruno           | Località: | Pisa                      | Data ini           | zio: | 15/04/202 | 1 Data fine: | 16/04/2021 |
|-----------|---------|-------|-----------------|-----------|---------------------------|--------------------|------|-----------|--------------|------------|
| Sondaggio | n.:     | 1     | Metodo perfor.: | Sondaggio | o a carotaggio continuo m | 20.0 a distruzione | m    | 11.0      | Diamm. (mm): | 101/127    |

# **UBICAZIONE INDAGINE**



CERTIFICAZIONI ANALISI DI LABORATORIO



#### Autorizzazione del Ministero delle Infrastrutture e dei Trasporti

Settore A – Prove di laboratorio su terre

Decreto 2436 del 14/03/2013 – ART. 59 DPR 380/2001 – Circolare 7618/STC 2010

# LABOTER Srl Lab. Geotecnico - C.S.LL.PP. Decr. 2436/13

**Committente:** 

Dott. Geologo Marco Toschi

**Cantiere:** 

Ex Caserma Curtatone Montanara - Pisa (PI)

**Verbale Accettazione n°:** 

246 del 28/04/2021

**Data Certificazione:** 

21/06/2021

Campioni n°:

3

Certificati da  $n^{\circ}$  a  $n^{\circ}$ :

02824 a 02834



# LABOTER S.r.I.

Via Nazario Sauro n.440 51100 Pistoia Tel. 0573 570566 e-mail: laboter@laboterpt.it DNV Business Assurance
Certificato N° 111177-2012-AQ-ITA-ACCREDIA
UNI EN ISO 9001:2015 (ISO 9001:2015)
Prove Geotecniche di Laboratorio su terre (Settore EA : 35)

#### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

COMMITTENTE: Dott. Geologo Marco Toschi

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 3.0-3.5

#### **CARATTERISTICHE FISICHE**

| Umidità naturale       | 25,8  | %     |
|------------------------|-------|-------|
| Peso di volume         | 19,5  | kN/m³ |
| Peso di volume secco   | 15,5  | kN/m³ |
| Peso di volume saturo  | 19,6  | kN/m³ |
| Peso specifico         | 26,5  | kN/m³ |
| Indice dei vuoti       | 0,704 |       |
| Porosità               | 41,3  | %     |
| Grado di saturazione   | 99,0  | %     |
| Limite di liquidità    |       | %     |
| Limite di plasticità   |       | %     |
| Indice di plasticità   |       | %     |
| Indice di consistenza  |       |       |
| Passante al set. nº 40 |       |       |
| Limite di ritiro       |       | %     |
| CNR-UNI 10006/00       |       |       |

#### **ANALISI GRANULOMETRICA**

| Ghiaia            | 1,3      | %  |
|-------------------|----------|----|
| Sabbia            | 20,3     | %  |
| Limo              | 58,8     | %  |
| Argilla           | 19,6     | %  |
| D 10              | 0,000395 | mm |
| D 50              | 0,013078 | mm |
| D 60              | 0,020673 | mm |
| D 90              | 0,227022 | mm |
| Passante set. 10  | 98,7     | %  |
| Passante set. 42  | 93,6     | %  |
| Passante set. 200 | 82,1     | %  |
|                   |          |    |

# PERMEABILITA'

Coefficiente k cm/sec

#### **COMPRESSIONE**

| σ                  | kPa |
|--------------------|-----|
| c <sub>u</sub>     | kPa |
| $\sigma_{Rim}$     | kPa |
| c <sub>u Rim</sub> | kPa |

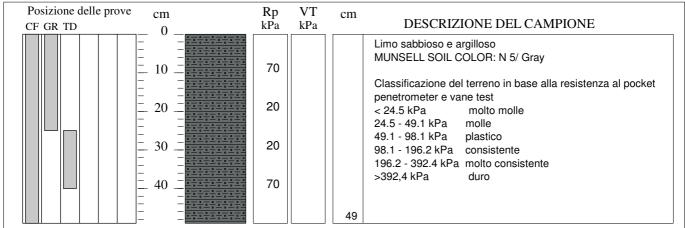
#### **TAGLIO DIRETTO**

| Prova consolidata-lenta |      |     |  |  |
|-------------------------|------|-----|--|--|
| C'                      | 10,4 | kPa |  |  |
| φ'                      | 22,6 | 0   |  |  |
| C' <sub>Res</sub>       |      | kPa |  |  |
| φ' <sub>Res</sub>       |      | 0   |  |  |

#### **COMPRESSIONE TRIASSIALE**

| C.D. | Cd   | kPa | фа           | 0 |
|------|------|-----|--------------|---|
| C.U. | C'cu | kPa | <b>φ'</b> cu | 0 |
| 0.0. | C cu | kPa | фси          | 0 |
| U.U. | Cu   | kPa | <b>Q</b> u   | 0 |

#### PROVA EDOMETRICA


| <b>♂</b><br>kPa | E<br>kPa | Cv<br>cm²/sec | k<br>cm/sec |
|-----------------|----------|---------------|-------------|
|                 |          |               |             |
|                 |          |               |             |
|                 |          |               |             |
|                 |          |               |             |
|                 |          |               |             |

#### **FOTOGRAFIA**



#### **OSSERVAZIONI**

Tipo di campione: Cilindrico Qualità del campione: Q 5





DNV Business Assurance
Certificato N° 111177-2012-AQ-ITA-ACCREDIA
UNI EN ISO 9001:2015 (ISO 9001:2015)
trove Geotecniche di Laboratorio su terre (Settore EA : 35)

### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA Nº: 02824 Pagina 1/1 DATA DI EMISSIONE: 21/06/21 Inizio analisi: 09/06/21 VERBALE DI ACCETTAZIONE N°: 246 del 28/04/21 Apertura campione: 09/06/21 Fine analisi: 10/06/21 COMMITTENTE: Dott. Geologo Marco Toschi RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI) SONDAGGIO: CAMPIONE: PROFONDITA': m 3.0-3.5 CONTENUTO D'ACQUA ALLO STATO NATURALE Modalità di prova: Norma ASTM D 2216-10

Wn = contenuto d'acqua allo stato naturale = 25,8 %

Omogeneo

Struttura del materiale:

☐ Caotico

Temperatura di essiccazione: 110 °C



DNV Business Assurance

Certificatio № 111177-2012-AQ-ITA-ACCREDIA

UNI EN ISO 9001:2015 (ISO 9001:2015)

Prove Geotecniche di Laboratorio su terre (Settore EA : 35)

#### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI Settore A - Prove di Laboratorio su terre

Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

 CERTIFICATO DI PROVA N°:
 02825
 Pagina 1/1
 DATA DI EMISSIONE:
 21/06/21
 Inizio analisi:
 09/06/21

 VERBALE DI ACCETTAZIONE N°:
 246 del 28/04/21
 Apertura campione:
 09/06/21
 Fine analisi:
 09/06/21

COMMITTENTE: Dott. Geologo Marco Toschi

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 3.0-3.5

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377 T 15/E

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale = 19,5 kN/m<sup>3</sup>



# LABOTER S.r.I. Via Nazario Sauro n.440

Via Nazario Sauro n.440 51100 Pistoia Tel. 0573 570566 e-mail: laboter@laboterpt.it DNV Business Assurance
Certificato N° 111177-2012-AQ-ITA-ACCREDIA
UNI EN ISO 9001:2015 (ISO 9001:2015)
Prove Geotecniche di Laboratorio su terre (Settore EA : 35)

#### ${\bf Autorizzazione~del~MINISTERO~DELLE~INFRASTRUTTURE~E~DEI~TRASPORTI}$

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°:02826Pagina 1/1VERBALE DI ACCETTAZIONE N°:246 del 28/04/21

DATA DI EMISSIONE: 21/06/21 Inizio analisi: 14/06/21 Apertura campione: 09/06/21 Fine analisi: 17/06/21

COMMITTENTE: Dott. Geologo Marco Toschi

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 3.0-3.5

#### **ANALISI GRANULOMETRICA**

Modalità di prova: Norma A.G.I. 1977

| Ghiaia<br>Sabbia<br>Limo | 1,3 %<br>20,3 %<br>58,8 %                                 | Passante seta | accio 10 (2 mm)<br>accio 40 (0.42 mm)<br>accio 200 (0.075 mm) | 98,7 %<br>93,6 %<br>82,1 % | D <sub>10</sub><br>D <sub>30</sub><br>D <sub>50</sub> | 0,00040 mm<br>0,00481 mm<br>0,01308 mm |
|--------------------------|-----------------------------------------------------------|---------------|---------------------------------------------------------------|----------------------------|-------------------------------------------------------|----------------------------------------|
| Argilla                  | 19,6 %                                                    | Passante set  | accio 200 (0.075 mm)                                          | 82,1 %                     | D <sub>60</sub>                                       | 0,02067 mm                             |
| Coefficiente d           | pefficiente di uniformità 52,33 Coefficiente di curvatura |               | 2,83                                                          | D <sub>90</sub>            | 0,22702 mm                                            |                                        |



| Diametro<br>mm | Passante % | Diametro<br>mm | Passa<br>% |   |
|----------------|------------|----------------|------------|----------------|------------|----------------|------------|----------------|------------|---|
| 9,5200         | 100,00     | 0,2970         | 91,78      | 0,0082         | 39,29      | 0,0013         | 17,20      |                |            |   |
| 4,7500         | 99,43      | 0,1500         | 87,25      | 0,0055         | 31,92      |                |            |                |            |   |
| 2,3600         | 99,00      | 0,0750         | 82,09      | 0,0039         | 27,01      |                |            |                |            |   |
| 1,1900         | 97,63      | 0,0247         | 63,83      | 0,0026         | 22,11      |                |            | Setacci        |            | 7 |
| 0,5950         | 95,42      | 0,0140         | 51,56      | 0,0020         | 19,65      |                |            | Punti sedir    | nent.      | 8 |

SGEO - Laboratorio 6.2 - 2020

Lo sperimentatore Dott, Geol. Chiara Colarusso Il direttore del laboratorio Dott. Ge<del>ologo</del> Paolo Tognelli

#### LABOTER S.r.I. Via Nazario Sauro n.440

51100 Pistoia Tel. 0573 570566 e-mail: laboter@laboterpt.it

to N° 111177-2012-AQ-ITA-ACC UNI EN ISO 9001:2015 (ISO 9001:2015) he di Laboratorio su terre (Se

#### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA Nº: 02827 DATA DI EMISSIONE: 21/06/21 Inizio analisi: 11/06/21 Pagina 1/4 VERBALE DI ACCETTAZIONE N°: 246 del 28/04/21 Apertura campione: 09/06/21 Fine analisi: 15/06/21

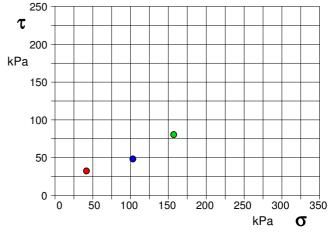
COMMITTENTE: Dott. Geologo Marco Toschi

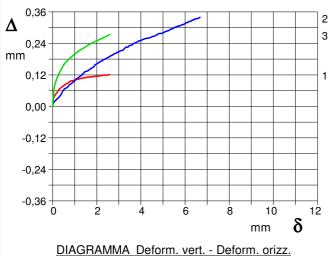
RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: CAMPIONE: PROFONDITA': m 3.0-3.5

#### PROVA DI TAGLIO DIRETTO

#### Modalità di prova: Norma ASTM D 3080-04


| Provino n°:                               | 1      | 1      |        | 2      | 3            |      |
|-------------------------------------------|--------|--------|--------|--------|--------------|------|
| Condizione del provino:                   | Indist | urbato | Indist | urbato | Indisturbato |      |
| Pressione verticale (kPa):                | 4      | 2      | 10     | 03     | 157          |      |
| Tensione a rottura (kPa):                 | 3      | 33     |        | 48     |              | 31   |
| Deformazione orizzontale a rottura (mm):  | 2,     | 2,23   |        | 5,23   |              | 68   |
| Deformazione verticale a rottura (mm):    | 0,     | 12     | 0,     | 29     | 0,           | 24   |
| Umidità iniziale e umidità finale (%):    |        | 23,9   |        | 22,8   |              | 23,6 |
| Peso di volume iniziale e finale (kN/m³): | 19,5   | 24,2   | 19,4   | 23,8   | 19,8         | 24,4 |


τ

#### **DIAGRAMMA**

Tensione - Pressione verticale

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0,007 mm / min Tempo di consolidazione (ore): 24





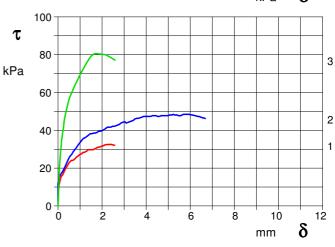



DIAGRAMMA Tensione - Deformaz. orizz.

#### LABOTER S.r.l. Via Nazario Sauro n.440 51100 Pistoia Tel. 0573 570566

Certificato Nº 111177-2012-AQ-ITA-ACCR UNI EN ISO 9001:2015 (ISO 9001:2015) eotecniche di Laboratorio su terre (Settore

#### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI Settore A - Prove di Laboratorio su terre

Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA Nº: 02827 Pagina 0/4 DATA DI EMISSIONE: 21/06/21 Inizio analisi: 11/06/21 VERBALE DI ACCETTAZIONE N°: 246 del 28/04/21 Apertura campione: 09/06/21 Fine analisi: 15/06/21

COMMITTENTE: Dott. Geologo Marco Toschi

e-mail: laboter@laboterpt.it

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: CAMPIONE: PROFONDITA': m 3.0-3.5

#### PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080-04

|                | Provino 1       |                     | Provino 2      |                 |                     |                | Provino 3       |                     |
|----------------|-----------------|---------------------|----------------|-----------------|---------------------|----------------|-----------------|---------------------|
| Spostam.<br>mm | Tensione<br>kPa | Deform. vert.<br>mm | Spostam.<br>mm | Tensione<br>kPa | Deform. vert.<br>mm | Spostam.<br>mm | Tensione<br>kPa | Deform. vert.<br>mm |
| 0,040          | 10,2            | 0,03                | 0,001          | 11,7            | 0,01                | 0,060          | 17,6            | 0,07                |
| 0,152          | 15,5            | 0,05                | 0,302          | 20,1            | 0,04                | 0,078          | 21,3            | 0,08                |
| 0,262          | 17,7            | 0,06                | 0,539          | 26,1            | 0,07                | 0,104          | 26,2            | 0,08                |
| 0,378          | 20,5            | 0,07                | 0,768          | 29,7            | 0,08                | 0,123          | 29,4            | 0,09                |
| 0,490          | 22,6            | 0,08                | 1,001          | 33,6            | 0,10                | 0,145          | 31,7            | 0,10                |
| 0,604          | 24,0            | 0,09                | 1,231          | 36,0            | 0,11                | 0,163          | 34,4            | 0,10                |
| 0,722          | 24,4            | 0,09                | 1,460          | 38,2            | 0,13                | 0,182          | 36,2            | 0,11                |
| 0,834          | 25,8            | 0,10                | 1,697          | 38,5            | 0,14                | 0,207          | 38,0            | 0,11                |
| 0,954          | 26,9            | 0,10                | 1,926          | 39,6            | 0,16                | 0,232          | 40,3            | 0,12                |
| 1,074          | 27,6            | 0,10                | 2,162          | 41,0            | 0,17                | 0,253          | 41,6            | 0,12                |
| 1,182          | 28,3            | 0,10                | 2,394          | 41,7            | 0,18                | 0,272          | 43,9            | 0,12                |
| 1,303          | 29,0            | 0,11                | 2,628          | 42,4            | 0,19                | 0,289          | 45,7            | 0,13                |
| 1,418          | 29,7            | 0,11                | 2,863          | 43,8            | 0,20                | 0,311          | 47,0            | 0,13                |
| 1,536<br>1,649 | 29,7            | 0,11                | 3,096<br>3,331 | 43,8            | 0,21<br>0,23        | 0,411<br>0,507 | 52,0<br>56,7    | 0,15                |
| 1,768          | 30,0<br>30,7    | 0,11<br>0,11        | 3,567          | 44,9<br>46,3    | 0,23                | 0,507          | 59,1            | 0,16<br>0,17        |
| 1,708          | 31,1            | 0,11                | 3,811          | 47,0            | 0,23                | 0,686          | 61,6            | 0,17                |
| 1,994          | 31,6            | 0,12                | 4,049          | 47,0            | 0,24                | 0,775          | 63,9            | 0,18                |
| 2,108          | 32,2            | 0,12                | 4,282          | 47,7            | 0,26                | 0,868          | 66,0            | 0,19                |
| 2,227          | 32,5            | 0,12                | 4,521          | 47,3            | 0,27                | 0,962          | 68,3            | 0,20                |
| 2,341          | 32,5            | 0,12                | 4,759          | 47,7            | 0,28                | 1,072          | 71,0            | 0,20                |
| 2,459          | 32,4            | 0,12                | 4,997          | 47,7            | 0,28                | 1,183          | 73,2            | 0,21                |
| 2,573          | 32,1            | 0,12                | 5,167          | 48,1            | 0,29                | 1,291          | 75,5            | 0,22                |
| ,              |                 | ,                   | 5,341          | 48,1            | 0,29                | 1,396          | 77,5            | 0,22                |
|                |                 |                     | 5,513          | 47,7            | 0,30                | 1,497          | 79,2            | 0,23                |
|                |                 |                     | 5,687          | 48,4            | 0,31                | 1,595          | 80,1            | 0,23                |
|                |                 |                     | 5,862          | 48,4            | 0,31                | 1,680          | 80,5            | 0,24                |
|                |                 |                     | 6,036          | 48,2            | 0,32                | 1,768          | 80,5            | 0,24                |
|                |                 |                     | 6,212          | 47,7            | 0,32                | 2,182          | 79,9            | 0,26                |
|                |                 |                     | 6,387          | 47,3            | 0,33                | 2,595          | 77,2            | 0,27                |
|                |                 |                     | 6,560          | 46,6            | 0,34                |                |                 |                     |
|                |                 |                     |                |                 |                     |                |                 |                     |
|                |                 |                     |                |                 |                     |                |                 |                     |
|                |                 |                     |                |                 |                     |                |                 |                     |
|                |                 |                     |                |                 |                     |                |                 |                     |
|                |                 |                     |                |                 |                     |                |                 |                     |
|                |                 |                     |                |                 |                     |                |                 |                     |
|                |                 |                     |                |                 |                     |                |                 |                     |
|                |                 |                     |                |                 |                     |                |                 |                     |
|                |                 |                     |                |                 |                     |                |                 |                     |
|                |                 |                     |                |                 |                     |                |                 |                     |
|                |                 |                     |                |                 |                     |                |                 |                     |
|                |                 |                     |                |                 |                     |                |                 |                     |
|                | 1               |                     |                | 1               |                     |                | 1               |                     |



# LABOTER S.r.I.

CERTIFICATO DI PROVA Nº: 02827

VERBALE DI ACCETTAZIONE N°:

Via Nazario Sauro n.440 51100 Pistoia Tel. 0573 570566 e-mail: laboter@laboterpt.it DNV Business Assurance
Certificato N° 111177-2012-AQ-ITA-ACCREDIA
UNI EN ISO 9001:2015 (ISO 9001:2015)
Prove Geotecniche di Laboratorio su terre (Settore EA : 35)

246 del 28/04/21

Pagina 3/4

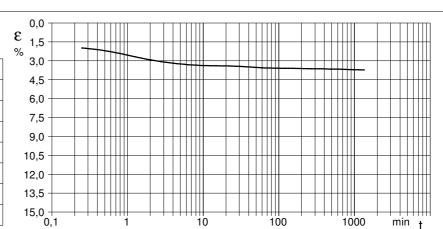
#### ${\bf Autorizzazione\ del\ MINISTERO\ DELLE\ INFRASTRUTTURE\ E\ DEI\ TRASPORTI}$

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

DATA DI EMISSIONE: 21/06/21 Inizio analisi: 11/06/21
Apertura campione: 09/06/21 Fine analisi: 15/06/21

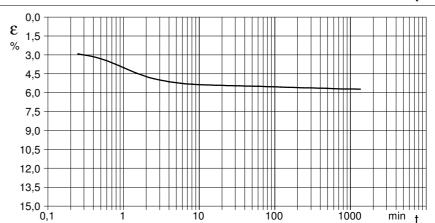
COMMITTENTE: Dott. Geologo Marco Toschi

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)


SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 3.0-3.5

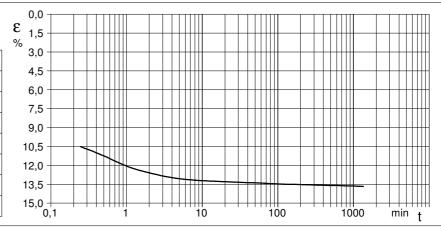
#### PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D 3080-04


#### <u>Diagramma</u> TEMPO - CEDIMENTO

| 42    |
|-------|
| 2,000 |
| 1,926 |
| 28,27 |
| 0,0   |
| 7     |
| 0,000 |
|       |




#### <u>Diagramma</u> <u>TEMPO - CEDIMENTO</u>

| PROVINO 2             |       |
|-----------------------|-------|
| Pressione (kPa)       | 103   |
| Altezza iniziale (cm) | 2,000 |
| Altezza finale (cm)   | 1,886 |
| Sezione (cm²):        | 28,27 |
| T <sub>50</sub> (min) | 0,0   |
| Df (mm)               | 7     |
| Vs (mm/min)           | 0,000 |



#### <u>Diagramma</u> <u>TEMPO - CEDIMENTO</u>

| 157   |
|-------|
| 2,000 |
| 1,726 |
| 28,27 |
| 0,0   |
| 7     |
| 0,000 |
|       |



Vs = Velocità stimata di prova Df = Deformazione a rottura stimata

 $tf = 50 \times T_{50}$ 

Vs = Df / tf

# LABOTER S.r.I. Via Nazario Sauro n.440 51100 Pistoia Tel. 0573 570566

DNV Business Assurance
Certificato N° 111177-2012-AQ-ITA-ACCREDIA
UNI EN ISO 9001:2015 (ISO 9001:2015)
Prove Geotecniche di Laboratorio su terre (Settore EA : 35)

#### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI Settore A - Prove di Laboratorio su terre

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

 CERTIFICATO DI PROVA N°:
 02827
 Pagina 4/4
 DATA DI EMISSIONE:
 21/06/21
 Inizio analisi:
 11/06/21

 VERBALE DI ACCETTAZIONE N°:
 246 del 28/04/21
 Apertura campione:
 09/06/21
 Fine analisi:
 15/06/21

COMMITTENTE: Dott. Geologo Marco Toschi

e-mail: laboter@laboterpt.it

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 3.0-3.5

#### PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D 3080-04

|         | Provino 1 |        |         | Provino 2 Provino 3 |        |         | Provino 2 |        |  |  |
|---------|-----------|--------|---------|---------------------|--------|---------|-----------|--------|--|--|
| Tempo   | Cedim.    | Cedim. | Tempo   | Cedim.              | Cedim. | Tempo   | Cedim.    | Cedim. |  |  |
| minuti  | mm/100    | %      | minuti  | mm/100              | %      | minuti  | mm/100    | %      |  |  |
| 0,00    | 0,00      | 0,00   | 0,00    | 0,00                | 0,00   | 0,00    | 0,00      | 0,00   |  |  |
| 0,25    | 39,70     | 1,99   | 0,25    | 58,50               | 2,93   | 0,25    | 210,60    | 10,53  |  |  |
| 0,50    | 43,90     | 2,20   | 0,50    | 66,10               | 3,31   | 0,50    | 224,90    | 11,25  |  |  |
| 1,00    | 50,90     | 2,55   | 1,00    | 80,30               | 4,02   | 1,00    | 241,10    | 12,06  |  |  |
| 2,00    | 58,40     | 2,92   | 2,00    | 94,40               | 4,72   | 2,00    | 251,90    | 12,60  |  |  |
| 4,00    | 63,80     | 3,19   | 4,00    | 102,60              | 5,13   | 4,00    | 259,50    | 12,98  |  |  |
| 8,00    | 66,90     | 3,35   | 8,00    | 106,60              | 5,33   | 8,00    | 263,60    | 13,18  |  |  |
| 15,00   | 67,90     | 3,40   | 15,00   | 108,00              | 5,40   | 15,00   | 265,30    | 13,27  |  |  |
| 30,00   | 68,80     | 3,44   | 30,00   | 109,00              | 5,45   | 30,00   | 266,80    | 13,34  |  |  |
| 60,00   | 71,00     | 3,55   | 60,00   | 109,90              | 5,50   | 60,00   | 268,20    | 13,41  |  |  |
| 120,00  | 71,80     | 3,59   | 120,00  | 111,10              | 5,56   | 120,00  | 269,80    | 13,49  |  |  |
| 240,02  | 72,40     | 3,62   | 240,00  | 112,20              | 5,61   | 240,00  | 270,70    | 13,54  |  |  |
| 480,02  | 73,00     | 3,65   | 480,00  | 113,10              | 5,66   | 480,00  | 271,80    | 13,59  |  |  |
| 900,02  | 73,90     | 3,70   | 900,00  | 114,20              | 5,71   | 900,00  | 272,60    | 13,63  |  |  |
| 1200,02 | 74,30     | 3,72   | 1200,00 | 114,30              | 5,72   | 1200,00 | 273,20    | 13,66  |  |  |
| 1440,00 | 74,50     | 3,73   | 1440,00 | 114,50              | 5,73   | 1440,00 | 273,60    | 13,68  |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |
|         |           |        |         |                     |        |         |           |        |  |  |

COMMITTENTE: Dott. Geologo Marco Toschi

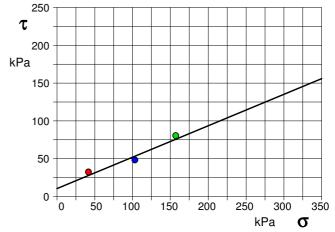
Ex Caserma Curtatone Montanara - Pisa (PI) RIFERIMENTO:

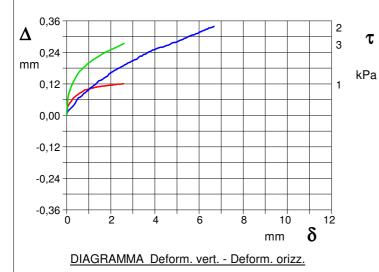
SONDAGGIO: CAMPIONE: PROFONDITA': m 3.0-3.5

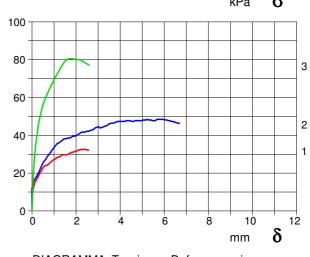
#### PROVA DI TAGLIO DIRETTO

#### Modalità di prova: Norma ASTM D 3080-04

| Provino n°:                               | 1      | 1 2    |        |           | 3      |        |    |     |
|-------------------------------------------|--------|--------|--------|-----------|--------|--------|----|-----|
| Condizione del provino:                   | Indist | ırbato | Indist | urbato    | Indist | urbato |    |     |
| Pressione verticale (kPa):                | 4      | 2      | 103    |           | 1      | 57     |    |     |
| Tensione a rottura (kPa):                 | 3      | 33     |        | 48        |        | 31     |    |     |
| Deformazione orizzontale a rottura (mm):  | 2,     | 2,23   |        | 2,23 5,23 |        | 23     | 1, | ,68 |
| Deformazione verticale a rottura (mm):    | 0,     | 0,12   |        | 0,29      |        | ,24    |    |     |
| Umidità iniziale e umidità finale (%):    |        | 23,9   |        | 22,8      |        | 23,6   |    |     |
| Peso di volume iniziale e finale (kN/m³): | 19,5   | 24,2   | 19,4   | 23,8      | 19,8   | 24,4   |    |     |


τ


#### **DIAGRAMMA**


#### Tensione - Pressione verticale

Coesione: 10,4 kPa Angolo di attrito interno: 22,6 °

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0,007 mm / min Tempo di consolidazione (ore):









Via Nazario Sauro n.440 51100 Pistoia Tel. 0573 570566 e-mail: laboter@laboterpt.it DNV Business Assurance
Certificato N° 111177-2012-AQ-ITA-ACCREDIA
UNI EN ISO 9001:2015 (ISO 9001:2015)
Prove Geotecniche di Laboratorio su terre (Settore EA : 35)

#### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

COMMITTENTE: Dott. Geologo Marco Toschi

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: 1 CAMPIONE: 2 PROFONDITA': m 6.0-6.5

#### **CARATTERISTICHE FISICHE**

| Umidità naturale       | 26,2  | %        |
|------------------------|-------|----------|
| Peso di volume         | 18,2  | kN/m³    |
| Peso di volume secco   | 14,4  | $kN/m^3$ |
| Peso di volume saturo  | 18,9  | kN/m³    |
| Peso specifico         | 26,5  | kN/m³    |
| Indice dei vuoti       | 0,836 |          |
| Porosità               | 45,5  | %        |
| Grado di saturazione   | 84,7  | %        |
| Limite di liquidità    |       | %        |
| Limite di plasticità   |       | %        |
| Indice di plasticità   |       | %        |
| Indice di consistenza  |       |          |
| Passante al set. nº 40 |       |          |
| Limite di ritiro       |       | %        |
| CNR-UNI 10006/00       |       |          |

#### **ANALISI GRANULOMETRICA**

| Ghiaia            |          | %  |
|-------------------|----------|----|
| Sabbia            | 66,9     | %  |
| Limo              | 29,9     | %  |
| Argilla           | 3,2      | %  |
| D 10              | 0,005884 | mm |
| D 50              | 0,181938 | mm |
| D 60              | 0,255012 | mm |
| D 90              | 0,556106 | mm |
| Passante set. 10  | 100,0    | %  |
| Passante set. 42  | 78,6     | %  |
| Passante set. 200 | 35,8     | %  |
|                   |          |    |

#### PERMEABILITA'

Coefficiente k cm/sec

#### **COMPRESSIONE**

| σ                  | kPa |
|--------------------|-----|
| cu                 | kPa |
| $\sigma_{Rim}$     | kPa |
| c <sub>u Rim</sub> | kPa |

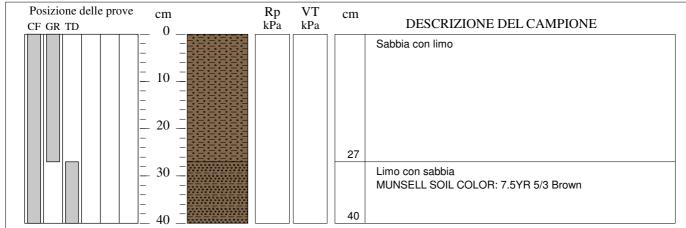
#### TAGLIO DIRETTO

| Prova co          | onsolidata-len | ta  |
|-------------------|----------------|-----|
| c'                | 13,5           | kPa |
| φ'                | 27,4           | 0   |
| C' <sub>Res</sub> |                | kPa |
| φ' <sub>Res</sub> |                | 0   |

#### **COMPRESSIONE TRIASSIALE**

| C.D. | Cd   | kPa | фd           | 0 |
|------|------|-----|--------------|---|
| C.U. | C'cu | kPa | <b>φ</b> 'cu | 0 |
| 0.0. | C cu | kPa | фcu          | 0 |
| U.U. | Cu   | kPa | фu           | 0 |

#### PROVA EDOMETRICA


| <b>o</b><br>kPa | E<br>kPa | Cv<br>cm²/sec | k<br>cm/sec |
|-----------------|----------|---------------|-------------|
|                 |          |               |             |
|                 |          |               |             |
|                 |          |               |             |
|                 |          |               |             |
|                 |          |               |             |

#### **FOTOGRAFIA**



#### **OSSERVAZIONI**

Tipo di campione: Cilindrico Qualità del campione: Q 5





DNV Business Assurance

Certificatio № 111177-2012-AQ-ITA-ACCREDIA

UNI EN ISO 9001:2015 (ISO 9001:2015)

Prove Geotecniche di Laboratorio su terre (Settore EA : 35)

## Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°: 02828 Pagina 1/1 DATA DI EMISSIONE: 21/06/21 Inizio analisi: 09/06/21 VERBALE DI ACCETTAZIONE N°: 246 del 28/04/21 Apertura campione: 09/06/21 Fine analisi: 10/06/21 COMMITTENTE: Dott. Geologo Marco Toschi RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI) SONDAGGIO: CAMPIONE: PROFONDITA': m 6.0-6.5 CONTENUTO D'ACQUA ALLO STATO NATURALE Modalità di prova: Norma ASTM D 2216-10

☐ Caotico

Temperatura di essiccazione: 110 °C



DNV Business Assurance
Certificato N\* 111177-2012-AQ-ITA-ACCREDIA
UNI EN ISO 9001:2015 (ISO 9001:2015)
Prove Geotecniche di Laboratorio su terre (Settore EA : 35)

#### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI Settore A - Prove di Laboratorio su terre

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

 CERTIFICATO DI PROVA N°:
 02829
 Pagina 1/1
 DATA DI EMISSIONE:
 21/06/21
 Inizio analisi:
 09/06/21

 VERBALE DI ACCETTAZIONE N°:
 246 del 28/04/21
 Apertura campione:
 09/06/21
 Fine analisi:
 09/06/21

COMMITTENTE: Dott. Geologo Marco Toschi

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: 1 CAMPIONE: 2 PROFONDITA': m 6.0-6.5

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377 T 15/E

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale = 18,2 kN/m<sup>3</sup>



# LABOTER S.r.I. Via Nazario Sauro n.440

CERTIFICATO DI PROVA N°: 02830

VERBALE DI ACCETTAZIONE N°:

Via Nazario Sauro n.440 51100 Pistoia Tel. 0573 570566 e-mail: laboter@laboterpt.it DNV Business Assurance
Certificato Nº 111177-2012-AQ-ITA-ACCREDIA
UNI EN ISO 9001:2015 (ISO 9001:2015)
Prove Geotecniche di Laboratorio su terre (Settore EA : 35)

246 del 28/04/21

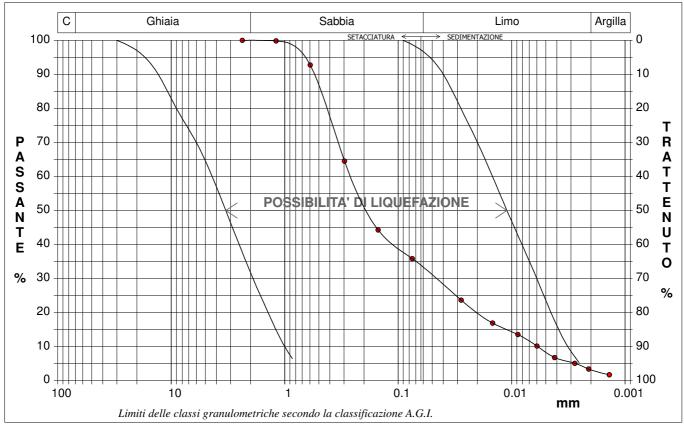
Pagina 1/1

#### ${\bf Autorizzazione~del~MINISTERO~DELLE~INFRASTRUTTURE~E~DEI~TRASPORTI}$

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

DATA DI EMISSIONE: 21/06/21 Inizio analisi: 14/06/21
Apertura campione: 09/06/21 Fine analisi: 17/06/21

COMMITTENTE: Dott. Geologo Marco Toschi


RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: 1 CAMPIONE: 2 PROFONDITA': m 6.0-6.5

#### **ANALISI GRANULOMETRICA**

Modalità di prova: Norma A.G.I. 1977

| Ghiaia       | 0,0 %         | Passante set | accio 10 (2 mm)           | 100,0 % | D <sub>10</sub> | 0,00588 mm |
|--------------|---------------|--------------|---------------------------|---------|-----------------|------------|
| Sabbia       | 66,9 %        |              | accio 40 (0.42 mm)        | 78,6 %  | D <sub>30</sub> | 0,04667 mm |
| Limo         | 29,9 %        |              | ,                         | ,       | D <sub>50</sub> | 0,18194 mm |
| Argilla      | 3,2 %         | Passante set | accio 200 (0.075 mm)      | 35,8 %  | D <sub>60</sub> | 0,25501 mm |
| Coefficiente | di uniformità | 43,34        | Coefficiente di curvatura | 1,45    | D <sub>90</sub> | 0,55611 mm |



| Diametro<br>mm | Passante % | Diametro<br>mm | Passante<br>% |
|----------------|------------|----------------|------------|----------------|------------|----------------|------------|----------------|---------------|
| 2,3600         | 100,00     | 0,0750         | 35,83      | 0,0042         | 6,77       |                |            |                |               |
| 1,1900         | 99,82      | 0,0278         | 23,65      | 0,0028         | 5,09       |                |            |                |               |
| 0,5950         | 92,75      | 0,0147         | 16,90      | 0,0021         | 3,40       |                |            |                |               |
| 0,2970         | 64,51      | 0,0088         | 13,53      | 0,0014         | 1,71       |                |            | Setacci        | 5             |
| 0,1500         | 44,28      | 0,0060         | 10,15      |                |            |                |            | Punti sedii    | ment. 8       |

Lo sperimentatore Dott, Geol. Chiara Colarusso II direttore del laboratorio Dott. Ge<del>ologo</del> Paolo Tognelli

SGEO - Laboratorio 6.2 - 2020

#### LABOTER S.r.I. Via Nazario Sauro n.440

51100 Pistoia Tel. 0573 570566 e-mail: laboter@laboterpt.it

to N° 111177-2012-AQ-ITA-ACC UNI EN ISO 9001:2015 (ISO 9001:2015) he di Laboratorio su terre (S

#### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

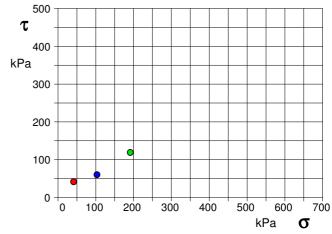
CERTIFICATO DI PROVA Nº: 02831 DATA DI EMISSIONE: 21/06/21 Inizio analisi: 11/06/21 Pagina 1/4 VERBALE DI ACCETTAZIONE N°: 246 del 28/04/21 Apertura campione: 09/06/21 Fine analisi: 16/06/21

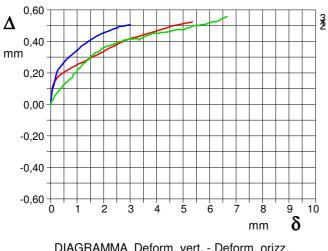
COMMITTENTE: Dott. Geologo Marco Toschi

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: CAMPIONE: PROFONDITA': m 6.0-6.5

#### PROVA DI TAGLIO DIRETTO


#### Modalità di prova: Norma ASTM D 3080-04


| Provino n°:                               |        | 1 2          |      | 2            |      | 3      |
|-------------------------------------------|--------|--------------|------|--------------|------|--------|
| Condizione del provino:                   | Indist | Indisturbato |      | Indisturbato |      | urbato |
| Pressione verticale (kPa):                | 4      | 42           |      | 103          |      | 91     |
| Tensione a rottura (kPa):                 | 4      | 42 60        |      | 60           |      | 19     |
| Deformazione orizzontale a rottura (mm):  | 2,     | 2,86 2,64    |      | 2,64         |      | 64     |
| Deformazione verticale a rottura (mm):    | 0,     | 41           | 0,   | 0,50         |      | 44     |
| Umidità iniziale e umidità finale (%):    |        | 38,2         |      | 43,6         |      | 33,1   |
| Peso di volume iniziale e finale (kN/m³): | 18,6   | 25,7         | 17,9 | 25,7         | 18,1 | 24,1   |

#### **DIAGRAMMA**

#### Tensione - Pressione verticale

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0,007 mm / min Tempo di consolidazione (ore): 24





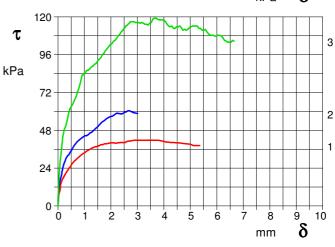



DIAGRAMMA Deform. vert. - Deform. orizz.

DIAGRAMMA Tensione - Deformaz. orizz.

#### LABOTER S.r.l. Via Nazario Sauro n.440 51100 Pistoia Tel. 0573 570566

Certificato Nº 111177-2012-AQ-ITA-ACCR UNI EN ISO 9001:2015 (ISO 9001:2015) eotecniche di Laboratorio su terre (Settore EA

#### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI Settore A - Prove di Laboratorio su terre

Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA Nº: 02831 DATA DI EMISSIONE: 21/06/21 11/06/21 Pagina 0/4 Inizio analisi: VERBALE DI ACCETTAZIONE N°: 246 del 28/04/21 Apertura campione: 09/06/21 Fine analisi: 16/06/21

COMMITTENTE: Dott. Geologo Marco Toschi

e-mail: laboter@laboterpt.it

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: CAMPIONE: PROFONDITA': m 6.0-6.5

#### PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080-04

| Provino 1      |                 |                     | Provino 2      |                 | Provino 3           |                |                 |                     |
|----------------|-----------------|---------------------|----------------|-----------------|---------------------|----------------|-----------------|---------------------|
| Spostam.<br>mm | Tensione<br>kPa | Deform. vert.<br>mm | Spostam.<br>mm | Tensione<br>kPa | Deform. vert.<br>mm | Spostam.<br>mm | Tensione<br>kPa | Deform. vert.<br>mm |
| 0,032          | 7,2             | 0,07                | 0,025          | 9,5             | 0,05                | 0,041          | 17,9            | 0,02                |
| 0,073          | 9,7             | 0,11                | 0,050          | 12,6            | 0,08                | 0,185          | 43,9            | 0,06                |
| 0,106          | 13,9            | 0,13                | 0,068          | 14,8            | 0,10                | 0,348          | 54,1            | 0,10                |
| 0,145          | 15,8            | 0,14                | 0,095          | 17,0            | 0,11                | 0,514          | 63,4            | 0,13                |
| 0,179          | 17,2            | 0,15                | 0,129          | 19,3            | 0,13                | 0,685          | 69,3            | 0,15                |
| 0,212          | 18,3            | 0,16                | 0,146          | 20,9            | 0,14                | 0,858          | 79,1            | 0,19                |
| 0,246          | 19,2            | 0,17                | 0,169          | 22,9            | 0,16                | 1,031          | 84,5            | 0,22                |
| 0,323          | 21,4            | 0,18                | 0,187          | 24,3            | 0,17                | 1,211          | 87,2            | 0,26                |
| 0,475          | 25,0            | 0,20                | 0,215          | 26,0            | 0,19                | 1,382          | 89,9            | 0,28                |
| 0,614          | 28,3            | 0,22                | 0,235          | 27,1            | 0,20                | 1,560          | 93,1            | 0,31                |
| 0,821          | 31,4            | 0,24                | 0,259          | 28,2            | 0,21                | 1,737          | 96,9            | 0,33                |
| 1,039          | 34,2            | 0,26                | 0,364          | 31,8            | 0,24                | 1,916          | 101,3           | 0,35                |
| 1,227          | 36,1            | 0,27                | 0,461          | 34,0            | 0,26                | 2,099          | 104,5           | 0,37                |
| 1,391          | 37,5            | 0,29                | 0,546          | 36,3            | 0,28                | 2,272          | 107,8           | 0,38                |
| 1,528          | 38,1            | 0,30                | 0,663          | 39,4            | 0,30                | 2,450          | 111,5           | 0,39                |
| 1,695          | 38,9            | 0,31                | 0,804          | 41,9            | 0,32                | 2,623          | 114,8           | 0,40                |
| 1,915          | 39,7            | 0,33                | 0,952          | 43,8            | 0,34                | 2,805          | 117,0           | 0,41                |
| 2,127          | 40,0            | 0,35                | 1,089          | 44,7            | 0,36                | 2,982          | 116,4           | 0,42                |
| 2,299          | 40,0            | 0,36                | 1,212          | 46,3            | 0,38                | 3,164          | 116,4           | 0,42                |
| 2,459          | 40,3            | 0,38                | 1,322          | 47,4            | 0,39                | 3,341          | 115,3           | 0,41                |
| 2,594          | 40,8            | 0,39                | 1,426          | 49,1            | 0,40                | 3,524          | 116,4           | 0,43                |
| 2,784          | 41,4            | 0,40                | 1,514          | 50,5            | 0,41                | 3,704          | 119,1           | 0,44                |
| 3,008          | 41,7            | 0,42                | 1,618          | 52,5            | 0,42                | 3,884          | 118,0           | 0,45                |
| 3,193          | 41,7            | 0,43                | 1,750          | 54,1            | 0,43                | 4,060          | 117,0           | 0,45                |
| 3,360          | 41,7            | 0,43                | 1,905          | 56,1            | 0,45                | 4,243          | 113,7           | 0,46                |
| 3,503          | 41,7            | 0,44                | 2,046          | 56,9            | 0,46                | 4,419          | 112,6           | 0,46                |
| 3,658          | 41,7            | 0,45                | 2,171          | 58,3            | 0,46                | 4,605          | 114,3           | 0,47                |
| 3,877          | 41,4            | 0,46                | 2,285          | 58,6            | 0,47                | 4,786          | 112,1           | 0,48                |
| 4,087          | 40,6            | 0,47                | 2,393          | 58,3            | 0,48                | 4,965          | 113,2           | 0,47                |
| 4,379          | 40,3            | 0,49                | 2,482          | 58,9            | 0,48                | 5,141          | 114,3           | 0,49                |
| 4,685          | 39,7            | 0,50                | 2,582          | 59,7            | 0,50                | 5,327          | 112,6           | 0,50                |
| 5,119          | 38,3            | 0,52                | 2,704          | 60,3            | 0,50                | 5,504          | 111,5           | 0,50                |
|                |                 |                     | 2,860          | 59,2            | 0,50                | 5,689          | 109,4           | 0,51                |
|                |                 |                     | 3,006          | 58,6            | 0,51                | 5,870          | 108,3           | 0,51                |
|                |                 |                     |                |                 |                     | 6,047          | 108,3           | 0,52                |
|                |                 |                     |                |                 |                     | 6,231          | 106,7           | 0,52                |
|                |                 |                     |                |                 |                     | 6,414          | 104,0           | 0,54                |
|                |                 |                     |                |                 |                     | 6,597          | 105,0           | 0,55                |
|                |                 |                     |                |                 |                     |                |                 |                     |
|                |                 |                     |                |                 |                     |                |                 |                     |



# LABOTER S.r.I. Via Nazario Sauro p.440

Via Nazario Sauro n.440 51100 Pistoia Tel. 0573 570566 e-mail: laboter@laboterpt.it DNV Business Assurance
Certificato N° 111177-2012-AQ-ITA-ACCREDIA
UNI EN ISO 9001:2015 (ISO 9001:2015)
Prove Geotecniche di Laboratorio su terre (Settore EA : 35)

#### $Autorizzazione \ del \ MINISTERO \ DELLE \ INFRASTRUTTURE \ E \ DEI \ TRASPORTI$

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

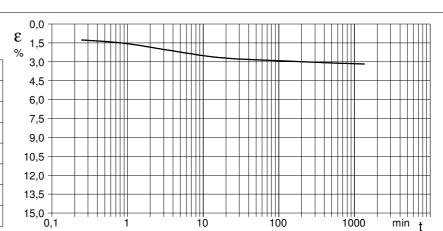
CERTIFICATO DI PROVA N°:02831Pagina 3/4VERBALE DI ACCETTAZIONE N°:246 del 28/04/21

DATA DI EMISSIONE: 21/06/21 Inizio analisi: 11/06/21

Apertura campione: 09/06/21 Fine analisi: 16/06/21

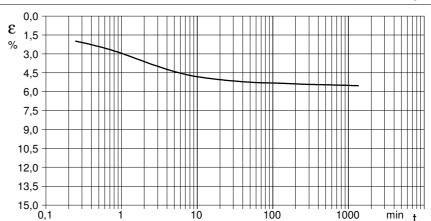
COMMITTENTE: Dott. Geologo Marco Toschi

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)


SONDAGGIO: 1 CAMPIONE: 2 PROFONDITA': m 6.0-6.5

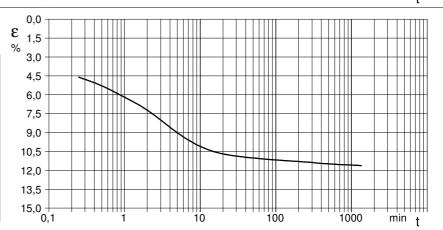
#### PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D 3080-04


#### <u>Diagramma</u> <u>TEMPO - CEDIMENTO</u>

| <u>-</u>              | _     |
|-----------------------|-------|
| PROVINO 1             |       |
| Pressione (kPa)       | 42    |
| Altezza iniziale (cm) | 2,000 |
| Altezza finale (cm)   | 1,937 |
| Sezione (cm²):        | 36,00 |
| T <sub>50</sub> (min) | 0,0   |
| Df (mm)               | 7     |
| Vs (mm/min)           | 0,000 |
|                       |       |




#### <u>Diagramma</u> <u>TEMPO - CEDIMENTO</u>

| PROVINO 2             |       |
|-----------------------|-------|
| Pressione (kPa)       | 103   |
| Altezza iniziale (cm) | 2,000 |
| Altezza finale (cm)   | 1,889 |
| Sezione (cm²):        | 36,00 |
| T <sub>50</sub> (min) | 0,0   |
| Df (mm)               | 7     |
| Vs (mm/min)           | 0,000 |



#### <u>Diagramma</u> <u>TEMPO - CEDIMENTO</u>

| 191   |
|-------|
| 2,000 |
| 1,767 |
| 36,00 |
| 0,0   |
| 7     |
| 0,000 |
|       |



Vs = Velocità stimata di prova Df = Deformazione a rottura stimata

 $tf = 50 \times T_{50}$ 

Vs = Df / tf

#### LABOTER S.r.l. Via Nazario Sauro n.440 51100 Pistoia Tel. 0573 570566

Certificato Nº 111177-2012-AQ-ITA-ACCRE UNI EN ISO 9001:2015 (ISO 9001:2015) eotecniche di Laboratorio su terre (Settore EA

#### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI Settore A - Prove di Laboratorio su terre

Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA Nº: 02831 Pagina 4/4 DATA DI EMISSIONE: 21/06/21 Inizio analisi: 11/06/21 VERBALE DI ACCETTAZIONE N°: 246 del 28/04/21 Apertura campione: 09/06/21 Fine analisi: 16/06/21

COMMITTENTE: Dott. Geologo Marco Toschi

e-mail: laboter@laboterpt.it

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: CAMPIONE: PROFONDITA': m 6.0-6.5

#### PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D 3080-04

|         | Provino 1 |        |         | Provino 2 |        | Provino 3 |        |        |
|---------|-----------|--------|---------|-----------|--------|-----------|--------|--------|
| Tempo   | Cedim.    | Cedim. | Tempo   | Cedim.    | Cedim. | Tempo     | Cedim. | Cedim. |
| minuti  | mm/100    | %      | minuti  | mm/100    | %      | minuti    | mm/100 | %      |
| 0,00    | 0,00      | 0,00   | 0,00    | 0,00      | 0,00   | 0,00      | 0,00   | 0,00   |
| 0,25    | 25,40     | 1,27   | 0,25    | 39,80     | 1,99   | 0,25      | 92,40  | 4,62   |
| 0,50    | 27,70     | 1,39   | 0,50    | 48,30     | 2,42   | 0,50      | 105,80 | 5,29   |
| 1,00    | 31,20     | 1,56   | 1,00    | 59,10     | 2,96   | 1,00      | 123,90 | 6,20   |
| 2,00    | 36,90     | 1,85   | 2,00    | 72,30     | 3,62   | 2,00      | 144,40 | 7,22   |
| 4,00    | 42,70     | 2,14   | 4,00    | 84,60     | 4,23   | 4,00      | 171,80 | 8,59   |
| 8,00    | 48,50     | 2,43   | 8,00    | 94,10     | 4,71   | 8,00      | 196,00 | 9,80   |
| 15,00   | 52,80     | 2,64   | 15,00   | 99,10     | 4,96   | 15,00     | 210,10 | 10,51  |
| 30,00   | 55,60     | 2,78   | 30,00   | 103,00    | 5,15   | 30,00     | 217,40 | 10,87  |
| 60,00   | 57,20     | 2,86   | 60,00   | 105,40    | 5,27   | 60,00     | 221,30 | 11,07  |
| 120,00  | 58,60     | 2,93   | 120,00  | 106,50    | 5,33   | 120,00    | 224,20 | 11,21  |
| 240,00  | 60,20     | 3,01   | 240,00  | 108,00    | 5,40   | 240,00    | 226,60 | 11,33  |
| 480,00  | 61,70     | 3,09   | 480,00  | 109,00    | 5,45   | 480,00    | 229,60 | 11,48  |
| 900,00  | 62,80     | 3,14   | 900,00  | 109,80    | 5,49   | 900,00    | 231,40 | 11,57  |
| 1200,00 | 63,30     | 3,17   | 1200,00 | 110,30    | 5,52   | 1200,00   | 232,10 | 11,61  |
| 1440,00 | 63,50     | 3,18   | 1440,00 | 110,70    | 5,54   | 1440,00   | 232,70 | 11,64  |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |
|         |           |        |         |           |        |           |        |        |

COMMITTENTE: Dott. Geologo Marco Toschi

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

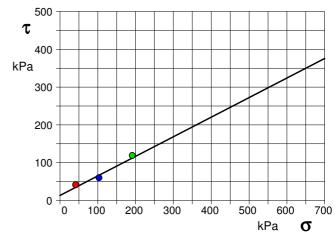
SONDAGGIO: 1 CAMPIONE: 2 PROFONDITA': m 6.0-6.5

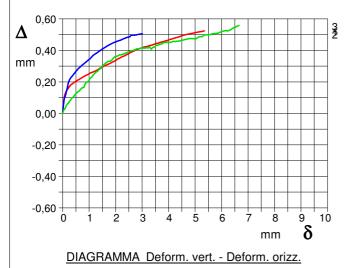
#### PROVA DI TAGLIO DIRETTO

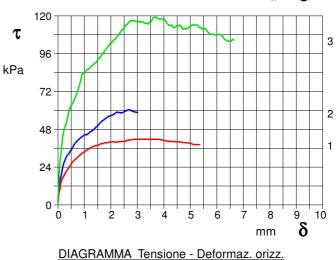
#### Modalità di prova: Norma ASTM D 3080-04

| Provino nº:                               | -      |              |      | 2            | ;    | 3            |  |
|-------------------------------------------|--------|--------------|------|--------------|------|--------------|--|
| Condizione del provino:                   | Indist | Indisturbato |      | Indisturbato |      | Indisturbato |  |
| Pressione verticale (kPa):                | 4      | 42 103       |      | 03           | 191  |              |  |
| Tensione a rottura (kPa):                 | 4      | 2            | 6    | 60           | 1    | 19           |  |
| Deformazione orizzontale a rottura (mm):  | 2,     | 36           | 2,   | 64           | 3,   | 64           |  |
| Deformazione verticale a rottura (mm):    | 0,     | 41           | 0,   | 50           | 0,   | 44           |  |
| Umidità iniziale e umidità finale (%):    |        | 38,2         |      | 43,6         |      | 33,1         |  |
| Peso di volume iniziale e finale (kN/m³): | 18,6   | 25,7         | 17,9 | 25,7         | 18,1 | 24,1         |  |

#### **DIAGRAMMA**


#### Tensione - Pressione verticale


Coesione: 13,5 kPa Angolo di attrito interno: 27,4 °


Tipo di prova: Consolidata - lenta

Velocità di deformazione: 0,007 mm / min

Tempo di consolidazione (ore): 24







# LABOTER S.r.I. Via Nazario Sauro n.440

Via Nazario Sauro n.440 51100 Pistoia Tel. 0573 570566 e-mail: laboter@laboterpt.it DNV Business Assurance

Certificato Nº 111177-2012-AQ-ITA-ACCREDIA

UNI EN ISO 9001:2015 (ISO 9001:2015)

Prove Geotecniche di Laboratorio su terre (Settore EA : 35)

#### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

σ

 $c_{u}$ 

 $\sigma_{\mathsf{Rim}}$ 

C<sub>u Rim</sub>

COMMITTENTE: Dott. Geologo Marco Toschi

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: 1 CAMPIONE: 3 PROFONDITA': m 16.0-16.5

#### **CARATTERISTICHE FISICHE**

| Umidità naturale       | 51,6  | %        |
|------------------------|-------|----------|
| Peso di volume         | 16,7  | kN/m³    |
| Peso di volume secco   | 11,0  | kN/m³    |
| Peso di volume saturo  | 16,8  | $kN/m^3$ |
| Peso specifico         | 26,5  | kN/m³    |
| Indice dei vuoti       | 1,398 |          |
| Porosità               | 58,3  | %        |
| Grado di saturazione   | 99,6  | %        |
| Limite di liquidità    |       | %        |
| Limite di plasticità   |       | %        |
| Indice di plasticità   |       | %        |
| Indice di consistenza  |       |          |
| Passante al set. nº 40 |       |          |
| Limite di ritiro       |       | %        |
| CNR-UNI 10006/00       |       |          |

#### **ANALISI GRANULOMETRICA**

| Ghiaia            | %  |
|-------------------|----|
| Sabbia            | %  |
| Limo              | %  |
| Argilla           | %  |
| D 10              | mm |
| D 50              | mm |
| D 60              | mm |
| D 90              | mm |
| Passante set. 10  | %  |
| Passante set. 42  | %  |
| Passante set. 200 | %  |
|                   |    |

#### TAGLIO DIRETTO

**COMPRESSIONE** 

11

5

kPa

kPa

kPa

kPa

| Prova consolidata-lenta |     |  |  |  |  |
|-------------------------|-----|--|--|--|--|
| c'                      | kPa |  |  |  |  |
| φ.                      | 0   |  |  |  |  |
| c' <sub>Res</sub>       | kPa |  |  |  |  |
| φ' <sub>Res</sub>       | 0   |  |  |  |  |

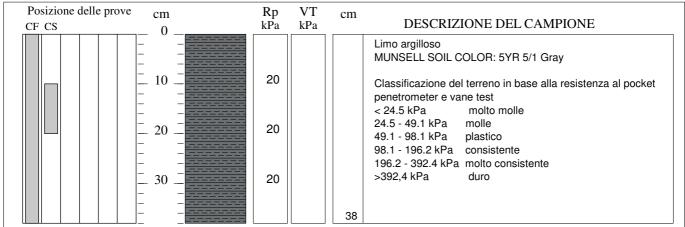
## % PERMEABILITA'

Coefficiente k cm/sec

#### **COMPRESSIONE TRIASSIALE**

| C.D. | Cd   | kPa        | фd           | 0 |
|------|------|------------|--------------|---|
| C.U. | C'cu | kPa<br>kPa | <b>φ'</b> cu | 0 |
| 0.0. | C cu | kPa        | фcu          | 0 |
| U.U. | Cu   | kPa        | <b>Q</b> u   | 0 |

#### **PROVA EDOMETRICA**


| <b>♂</b><br>kPa | E<br>kPa | Cv<br>cm²/sec | k<br>cm/sec |
|-----------------|----------|---------------|-------------|
|                 |          |               |             |
|                 |          |               |             |
|                 |          |               |             |
|                 |          |               |             |
|                 |          |               |             |

#### FOTOGRAFIA



#### **OSSERVAZIONI**

Tipo di campione: Cilindrico Qualità del campione: Q 5





DNV Business Assurance
Certificato N° 111177-2012-AQ-ITA-ACCREDIA
UNI EN ISO 9001:2015 (ISO 9001:2015)
trove Geotecniche di Laboratorio su terre (Settore EA : 35)

#### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°: 02832 Pagina 1/1 DATA DI EMISSIONE: 21/06/21 Inizio analisi: 09/06/21 VERBALE DI ACCETTAZIONE N°: 246 del 28/04/21 Apertura campione: 09/06/21 Fine analisi: 10/06/21 COMMITTENTE: Dott. Geologo Marco Toschi RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI) SONDAGGIO: CAMPIONE: PROFONDITA': m 16.0-16.5 CONTENUTO D'ACQUA ALLO STATO NATURALE Modalità di prova: Norma ASTM D 2216-10

Wn = contenuto d'acqua allo stato naturale = 51,6 %

Omogeneo

Struttura del materiale:

☐ Caotico

Temperatura di essiccazione: 110 °C



CERTIFICATO DI PROVA N°: 02833

VERBALE DI ACCETTAZIONE N°:

DNV Business Assurance
Certificato N\* 111177-2012-AQ-ITA-ACCREDIA
UNI EN ISO 9001:2015 (ISO 9001:2015)
Prove Geotecniche di Laboratorio su terre (Settore EA : 35)

246 del 28/04/21

#### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI Settore A - Prove di Laboratorio su terre

Settore A - Prove di Laboratorio su terre

Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

Pagina 1/1 DATA DI EMISSIONE: 21/06/21 Inizio analisi: 09/06/21 28/04/21 Apertura campione: 09/06/21 Fine analisi: 09/06/21

COMMITTENTE: Dott. Geologo Marco Toschi

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: 1 CAMPIONE: 3 PROFONDITA': m 16.0-16.5

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377 T 15/E

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale = 16,7 kN/m<sup>3</sup>



# LABOTER S.r.I. Via Nazario Sauro n.440 51100 Pistoia Tel. 0573 570566

DNV Business Assurance
Certificato N° 111177-2012-AQ-ITA-ACCREDIA
UNI EN ISO 9001:2015 (ISO 9001:2015)
Prove Geotecniche di Laboratorio su terre (Settore EA : 35)

#### Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI Settore A - Prove di Laboratorio su terre

Settore A - Prove di Laboratorio su terre

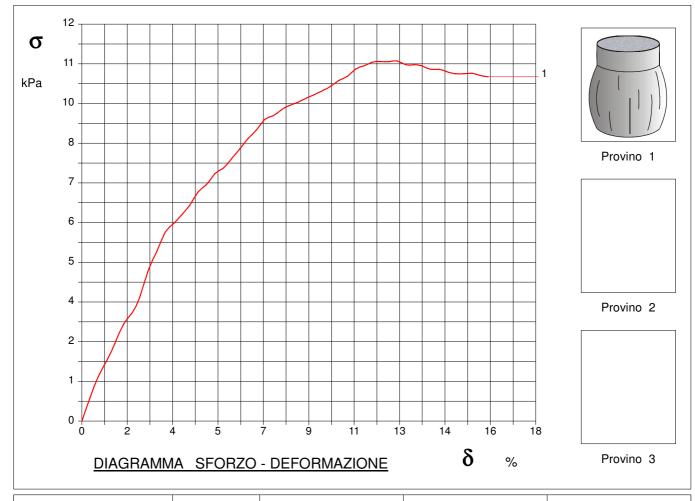
Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°:02834Pagina 1/1VERBALE DI ACCETTAZIONE N°:246 del 28/04/21

DATA DI EMISSIONE: 21/06/21 Inizio analisi: 10/06/21 Apertura campione: 09/06/21 Fine analisi: 11/06/21

COMMITTENTE: Dott. Geologo Marco Toschi

e-mail: laboter@laboterpt.it


RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: 1 CAMPIONE: 3 PROFONDITA': m 16.0-16.5

#### PROVA DI COMPRESSIONE AD ESPANSIONE LATERALE LIBERA

Modalità di prova: Norma ASTM D 2166-06

| Provino nº:                        | 1            | 2 | 3 |
|------------------------------------|--------------|---|---|
| Condizione del provino:            | Indisturbato |   |   |
| Velocità di deformazione (mm/min): | 1,270        |   |   |
| Altezza (cm):                      | 7,60         |   |   |
| Sezione (cm²):                     | 11,28        |   |   |
| Peso di volume (kN/m³):            | 16,7         |   |   |
| Umidità naturale (%):              | 51,1         |   |   |





DNV Business Assurance
Certificato N° 111177-2012-AQ-ITA-ACCREDIA
UNI EN ISO 9001:2015 (ISO 9001:2015)
Prove Geotecniche di Laboratorio su terre (Settore EA : 35)

## Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

 CERTIFICATO DI PROVA N°:
 02834
 Pagina 0/1
 DATA DI EMISSIONE:
 21/06/21
 Inizio analisi:
 10/06/21

 VERBALE DI ACCETTAZIONE N°:
 246 del 28/04/21
 Apertura campione:
 09/06/21
 Fine analisi:
 11/06/21

COMMITTENTE: Dott. Geologo Marco Toschi

RIFERIMENTO: Ex Caserma Curtatone Montanara - Pisa (PI)

SONDAGGIO: 1 CAMPIONE: 3 PROFONDITA': m 16.0-16.5

#### PROVA DI COMPRESSIONE AD ESPANSIONE LATERALE LIBERA

Modalità di prova: Norma ASTM D 2166-06

| Provino 1 |          |         | Provino 2 |         |          | Provino 3 |          |         |          |         |          |
|-----------|----------|---------|-----------|---------|----------|-----------|----------|---------|----------|---------|----------|
| Deform.   | Tensione | Deform. | Tensione  | Deform. | Tensione | Deform.   | Tensione | Deform. | Tensione | Deform. | Tensione |
| %         | kPa      | %       | kPa       | %       | kPa      | %         | kPa      | %       | kPa      | %       | kPa      |
| 0,35      | 0,8      | 12,85   | 10,8      |         |          |           |          |         |          |         |          |
| 0,68      | 1,4      | 13,18   | 10,8      |         |          |           |          |         |          |         |          |
| 1,01      | 1,9      | 13,51   | 10,7      |         |          |           |          |         |          |         |          |
| 1,34      | 2,4      | 13,84   | 10,6      |         |          |           |          |         |          |         |          |
| 1,67      | 2,9      | 14,17   | 10,6      |         |          |           |          |         |          |         |          |
| 2,00      | 3,3      | 14,50   | 10,6      |         |          |           |          |         |          |         |          |
| 2,32      | 3,8      | 14,82   | 10,5      |         |          |           |          |         |          |         |          |
| 2,65      | 4,6      | 15,15   | 10,5      |         |          |           |          |         |          |         |          |
| 2,98      | 5,1      | 15,48   | 10,5      |         |          |           |          |         |          |         |          |
| 3,31      | 5,7      | 15,81   | 10,4      |         |          |           |          |         |          |         |          |
| 3,64      | 6,0      | 16,14   | 10,4      |         |          |           |          |         |          |         |          |
| 3,97      | 6,2      |         |           |         |          |           |          |         |          |         |          |
| 4,30      | 6,5      |         |           |         |          |           |          |         |          |         |          |
| 4,63      | 6,9      |         |           |         |          |           |          |         |          |         |          |
| 4,96      | 7,2      |         |           |         |          |           |          |         |          |         |          |
| 5,29      | 7,5      |         |           |         |          |           |          |         |          |         |          |
| 5,61      | 7,7      |         |           |         |          |           |          |         |          |         |          |
| 5,94      | 7,9      |         |           |         |          |           |          |         |          |         |          |
| 6,27      | 8,2      |         |           |         |          |           |          |         |          |         |          |
| 6,60      | 8,6      |         |           |         |          |           |          |         |          |         |          |
| 6,93      | 8,8      |         |           |         |          |           |          |         |          |         |          |
| 7,26      | 9,1      |         |           |         |          |           |          |         |          |         |          |
| 7,59      | 9,2      |         |           |         |          |           |          |         |          |         |          |
| 7,92      | 9,4      |         |           |         |          |           |          |         |          |         |          |
| 8,25      | 9,5      |         |           |         |          |           |          |         |          |         |          |
| 8,57      | 9,6      |         |           |         |          |           |          |         |          |         |          |
| 8,90      | 9,8      |         |           |         |          |           |          |         |          |         |          |
| 9,23      | 9,9      |         |           |         |          |           |          |         |          |         |          |
| 9,56      | 10,0     |         |           |         |          |           |          |         |          |         |          |
| 9,89      | 10,1     |         |           |         |          |           |          |         |          |         |          |
| 10,22     | 10,3     |         |           |         |          |           |          |         |          |         |          |
| 10,55     | 10,4     |         |           |         |          |           |          |         |          |         |          |
| 10,88     | 10,7     |         |           |         |          |           |          |         |          |         |          |
| 11,21     | 10,7     |         |           |         |          |           |          |         |          |         |          |
| 11,54     | 10,9     |         |           |         |          |           |          |         |          |         |          |
| 11,86     | 10,9     |         |           |         |          |           |          |         |          |         |          |
| 12,19     | 10,9     |         |           |         |          |           |          |         |          |         |          |
| 12,52     | 10,9     |         |           |         |          |           |          |         |          |         |          |



ELABORAZIONE PROVA SISMICA IN FORO (DOWN HOLE)

Geognostica

Monitoraggio idrogeologico



Geofisica

Indagini ambientali

**Committente: Geol. Marco Toschi** 

Località d'indagine: ex caserma Curtatone e Montanara – San Martino – Pisa

Data: 25 / 06 / 2021



indagine: 1 downhole

strumentazione: Ambrogeo Echo 12/24 2002

software di elaborazione: Intersism v3.2

per la geoLUK 9.r.l.,

l'Amministrator

GEOGNOSTICA E GEOFISICA

#### INDICE

| 1. PREMESSA                                     | 2 |
|-------------------------------------------------|---|
| 1.1. Introduzione al metodo                     | 2 |
| 1.2. Sistema di acquisizione                    | 2 |
| 1.2.1. Sismografo + software di acquisizione    | 2 |
| 1.2.2. Sistema energizzante                     | 3 |
| 1.2.3. Trigger                                  | 3 |
| 1.2.4. Apparecchiatura di ricezione             | 3 |
| 2. METODOLOGIA D'INDAGINE                       | 4 |
| 2.1.1. Acquisizione, elaborazione, restituzione | 4 |
| 3. INDAGINE E INTERPRETAZIONE                   | 5 |
| 3.1. Breve descrizione dell'area d'indagine     |   |
| 3.2. Interpretazione                            |   |

#### ALLEGATI e FIGURE

Ubicazione

Sismogrammi grezzi (P,S)

Dromocrone (P, S)

Tabella riassuntiva

#### PROSPEZIONE SISMICA IN FORO DI TIPO DOWNHOLE

#### 1. PREMESSA

Per incarico del Dott. Geol. Marco Toschi è stata effettuata nº1 prospezione sismica a rifrazione in foro di tipo downhole, eseguita in onde P e S, per definire la categoria sismica di sottosuolo all'interno della ex caserma Curtatone e Montanara, ubitaca in via Giordano Bruno, a San Martino, Pisa.

#### 1.1. Introduzione al metodo

Fra le indagini geofisiche del sottosuolo la sismica a rifrazione in foro rappresenta ad oggi una delle migliori tecniche di caratterizzazione sismica del terreno e per questo viene comunemente utilizzata in geologia applicata ed in campo ingegneristico. La sua esecuzione richiede tuttavia la preparazione da parte di una sonda di un foro nel terreno, successivamente attrezzato con un tubo in plastica a sua volta ben cementato con il terreno circostante. Questo procedimento, il più delle volte economicamente poco vantaggioso e logisticamente non sempre possibile, risulta forse l'unica grande limitazione di questo valido metodo di caratterizzazione sismica. Inoltre, per la corretta e funzionale applicazione della metodologia si rende necessaria la condizione di disporre per tutta la sua lunghezza di una perfetta cementazione del tubo di indagine e di poter garantire un'energia di superficie sufficientemente efficace e "pulita". Tuttavia l'efficacia di questa metodologia è oggettivamente riconosciuta e addirittura prescritta, in taluni casi, anche in campo normativo.

La prospezione sismica di tipo downhole viene generalmente realizzata congiuntamente in onde compressionali e trasversali anche perché disponendo dei valori di densità delle principali formazioni attraversate (ricavabili dalle analisi di laboratorio dei campioni prelevati durante il sondaggio) è possibile ricavare i moduli elastici che in campo geologico/ingegneristico risultano essere spesso molto utilii in fase di progettazione.

Il prodotto finale di un'indagine sismica in foro consiste generalmente in una parte grafica e in una numerica. La prima è costituita sia sismogramma derivante dall'unione di tutte le singole tracce prodotte con le energizzazioni sia dal profilo sismico lungo la verticale del foro. La parte analitica raccoglie le informazioni geometriche (spessore e profondità degli strati incontrati) e le proprietà fisiche dei sismostrati (velocità, parametri elastici) indagati.

#### 1.2. Sistema di acquisizione

L'acquisizione dei dati in campagna è stata eseguita utilizzando un sistema composto dalle sequenti parti:

- → sismografo + personal computer portatile dotato di software di acquisizione;
- → sorgente energizzante;
- → trigger;
- → apparecchiatura di ricezione (geofono di tipo twin, cavi di collegamento).

#### 1.2.1. Sismografo + software di acquisizione

Lo strumento utilizzato per l' indagine è un Echo 12/24 2002 Seismic UNIT, gestito dal software di acquisizione Ambrogeo Echo 12-24, che complessivamente presentano le seguenti caratteristiche:

- Registrazione a 12/24 canali
- Impedenza di ingresso 20 Kohm
- Range dinamico: 93 dB
- Conversione A/D a 16 bit
- Intervallo di campionamento selezionabile a: 25, 50, 100, 200, 400, 800 ms
- Durata della registrazione: 25, 50, 10, 20, 400, 800 m
- Guadagno 10 dB 100 dB, passo 1 dB
- Tensione di saturazione +/- 2,3 V
- Distorsione 0,01%
- Campionamento 130 ms
- Filtro passa basso da 50 a 950 Hz, passo 1 Hz
- Alimentazione 12V

#### 1.2.2. Sistema energizzante

A seconda della tipologia di onde da generare si distingue per la parte energizzante la mazza da 10Kg impattante su un piattello quadrato (20x20x0.4cm) in duralluminio, utilizzato per le onde compressionali (tipo P) e sempre la suddetta mazza impattante su una traversina in legno sovraccaricata da una massa statica e disposta ortogonalmente alla distanza della stessa con il foro superficiale attrezzato (congiungente shot-boccaforo). La traversina percossa alle due estremità permette di generare onde di taglio (tipo Sh) polarizzate orizzontalmente (destra DX e sinistra SX).

Nel caso vengano realizzate entrambe le onde S polarizzate (+/-) i rispettivi sismogrammi in fase di elaborazione, vengono sommati, DX+(-SX), consentendo generalmente l'amplificazione del segnale utile. L'orientazione utilizzata in questo lavoro intende SX come la percossione della parte sinistra (spalle alla traversina guardando verso il boccaforo) della massa energizzata.

L'accoppiamento traversina-terreno o piattello-terreno viene all'occorrenza (es. su asfalto/cemento/selciato) migliorato interponendo e mantenendo per tutta l'acquisizione un sottile strato (2-3cm) di terriccio fine.

#### 1.2.3. Trigger

Il trigger utilizzato consiste in un circuito elettrico che viene chiuso mediante un apparecchio starter (geofono starter, starter a lamelle) nell'istante in cui il sistema energizzante (es. mazza) colpisce la base di battuta, consentendo ad un condensatore di scaricare la carica precedentemente immagazzinata e la produzione di un impulso della durata di qualche secondo che viene inviato al sensore collegato al sistema di acquisizione dati.

#### 1.2.4. Apparecchiatura di ricezione

Il sistema di ricezione, composto da un geofono twin attrezzato con trasduttori GS-20DM della GeoSpace fornito dalla Ambrogeo di Piacenza, è composto da due ricevitori, ognuno dei quali è costituito da un trasduttore di velocità orientato secondo le componenti di una terna cartesiana ortonormale, collocati all'interno di un unico contenitore, in modo che uno dei tre trasduttori sia orientato secondo la lunghezza del contenitore (trasduttore verticale) e gli altri due risultino ad esso perpendicolari (trasduttori orizzontali). I ricevitori, alloggiati all'interno di un telaio semirigido sono fissati in posizione secondo una distanza verticale pari a 1m e risultano fra loro paralleli e concordi.

#### 2. METODOLOGIA D'INDAGINE

#### 2.1.1. Acquisizione, elaborazione, restituzione

- L'acquisizione consiste nella produzione di una serie di files (*dataset*) in formato SEGY che contengono le informazioni geometriche e sismiche (n°stacks, forma dell'onda registrata, tempi di arrivo...) della prospezione;
- L'elaborazione dei dati, eseguita con il software Intersism V 3.2 della *Pasi* prevede:
  - la determinazione dei primi arrivi attraverso picking;
  - > l'elaborazione dei dati ed interpretazione;
- La restituzione consiste nella produzione dei seguenti elaborati:
  - > sismogramma complessivo in onde P e in onde S;
  - dromocrone;
  - profilo sismostratigrafico, unitamente alle velocità sismostrati calcolate
  - > tabella riassuntiva con tempi di arrivo, spessore e velocità sismostrati, calcolo Vs

#### 3. INDAGINE E INTERPRETAZIONE

#### 3.1. Breve descrizione dell'area d'indagine

L'area oggetto di indagine finalizzata a un piano di recupero è ubicata in pieno centro storico della città di Pisa e pertanto in pianura alluvionale, in sinistra idrografica del fiume Arno, quartiere San Martino. Nel dettaglio, il punto di indagine scelto per la realizzazione del sondaggio è ubicato all'interno di un'ampia area a verde, ad una quota di circa 8m slm.

Il sondaggio, successivamente attrezzato per la prospezione sismica e per la cui logistica si rimanda alla relativa tavola (v. ubicazione), è stato spinto fino alla profondità di 30m (fondo foro) dal piano campagna. In fase di avanzamento e in particolare fino alla quota di -20m dal p.c. è stata utilizzata la tecnica del carotaggio continuo, mentre per i rimanenti 10m l'indagine è proseguita a distruzione. La porzione di stratigrafia recuperata con la tecnica del carotaggio continuo, raccolta nelle cassette catalogatrici, è stata utilizzata come riferimento per la taratura geologica della prospezione sismica eseguita in foro. Per la porzione più profonda rimanente sono stati consultati i dati bibliografici disponibili nelle immediate vicinanze estratti dal database geologico della Regione Toscana, i dati ricavabili dagli strumenti urbanistici del Comune di Pisa e i dati derivanti dall'analisi del *cutting* affiorante in superficie durante la perforazione a distruzione.

L'accoppiamento terreno naturale/tubazione è stato realizzato mediante cementazione e, per l'esecuzione dell'indagine geofisica, è stato atteso il tempo opportuno affinché il materiale legante risultasse indurito.

L'indagine geofisica in foro ha previsto, per la sua fase di acquisizione, la raccolta di tre dataset di sismogrammi (uno in onde P e due in onde S), partendo da quota -30m fino a -1m da p.c.

Come sorgente di onde compressionali è stata utilizzata una mazza da 10Kg impattante sul terreno mediante un piattello in resina quadrato, mentre per le onde di taglio la stessa mazza è stata fatta impattare in senso longitudinale su una traversina in legno sovraccaricata da una autovettura. La traversina è stata percossa da entrambi i lati, in modo da poter generare onde a polarità invertita, tali da poter essere successivamente sommate in fase di elaborazione, per la corretta identificazione del primo arrivo.

La zona di indagine, pur essendo inserita all'interno di un contesto antropizzato caratterizzato da intenso traffico veicolare, ha comunque permesso la registrazione di segnali mediamente buoni.

Nel calcolo della Vs30 si riporta in tabella allegata il valore risultante a partire dal piano campagna, in quanto non sono state fornite specifiche sulle tipologie e geometrie fondazionali previste in progetto.

#### 3.2. Interpretazione

La porzione di terreno indagato risulta essere complessivamente caratterizzata da una situazione a 4 sismostrati principali. In particolare:

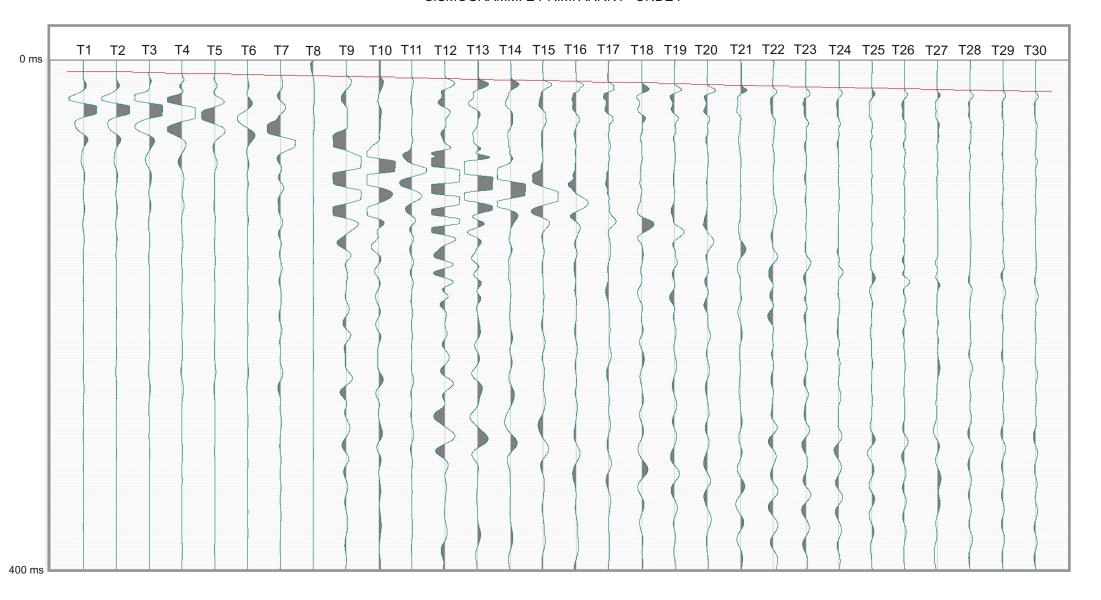
#### DH1 - 43.563602N, 10.329140E WGS84 (°):

- > sismostrato superficiale:
  - VS variabile tra 316 e 318 m/s e spessore di circa 2m, riconducibile a riporto consistente;
  - VP circa 421 m/s e spessore di circa 2m riconducibile a riporto consistente.

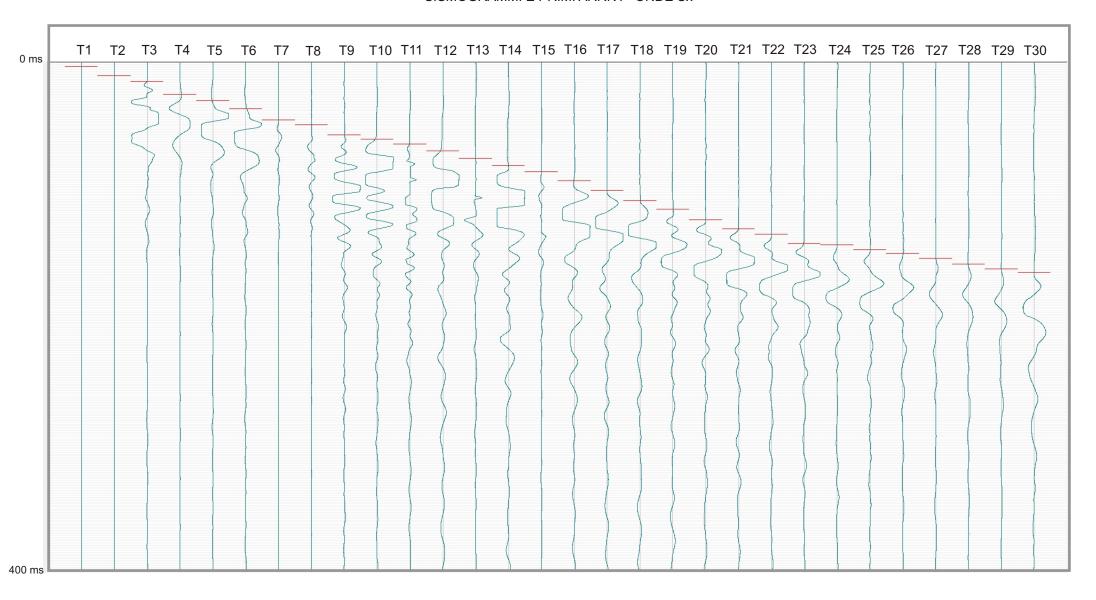
#### > sismostrato intermedio superiore:

- VS variabile tra 135 e 151 m/s e spessore di circa 2m, riconducibile a limi sabbiosi e sabbie limose;
- VP circa 578 m/s e spessore di circa 2m, riconducibile a limi sabbiosi e sabbie limose.

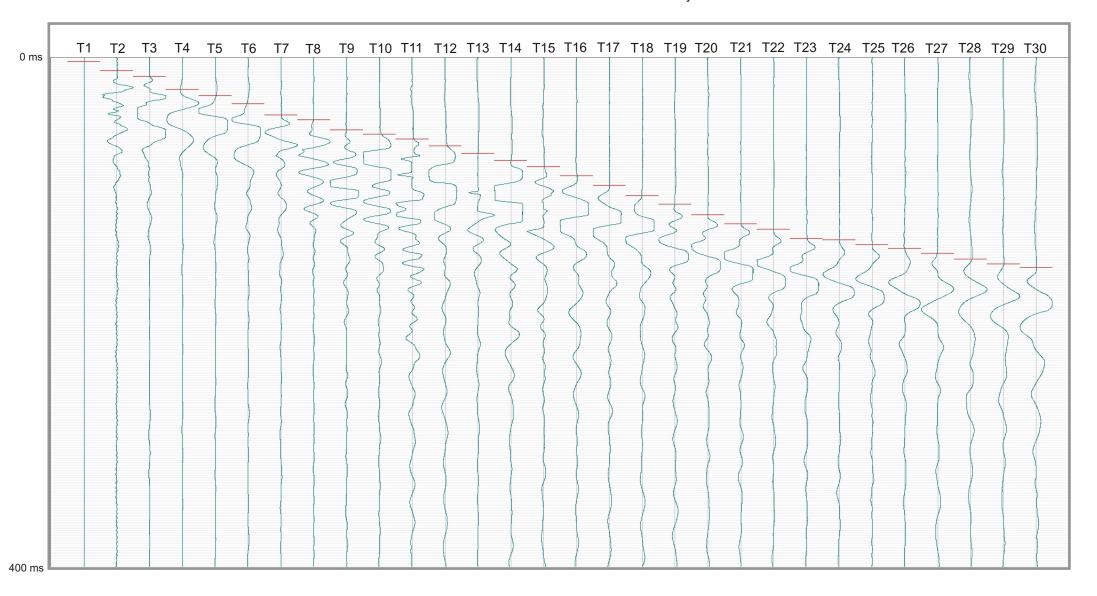
#### > sismostrato intermedio inferiore:


- VS variabile tra 158 e 159 m/s e spessore di circa 19m, riconducibile principalmente a sabbie limose sature;
- VP circa 1585 m/s e spessore di circa 19m, riconducibile principalmente a sabbie limose sature.

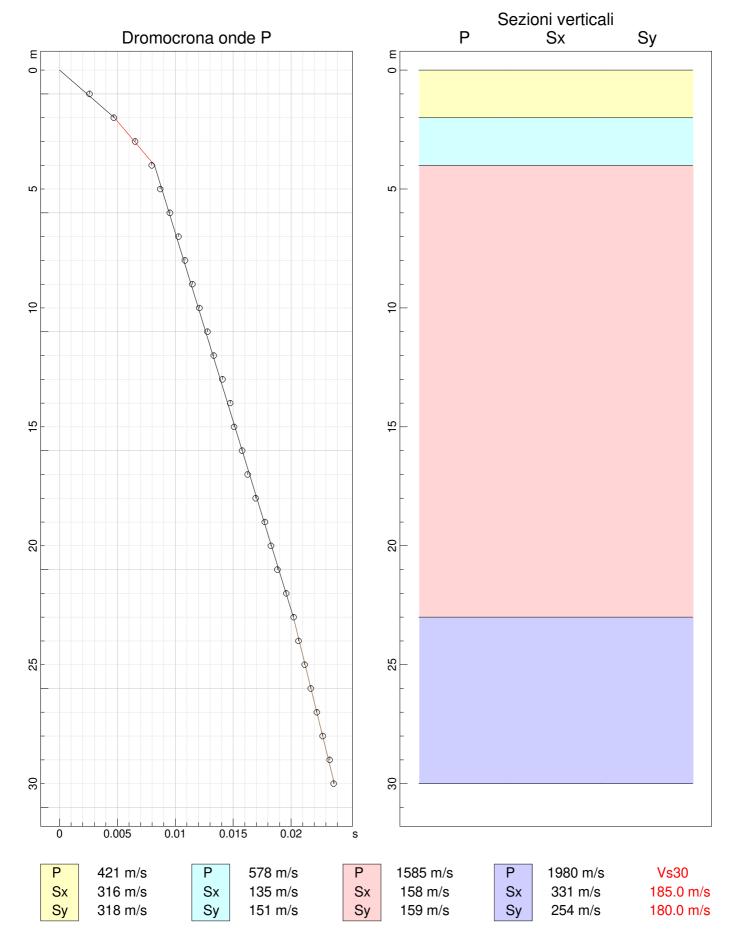
#### sismostrato profondo:

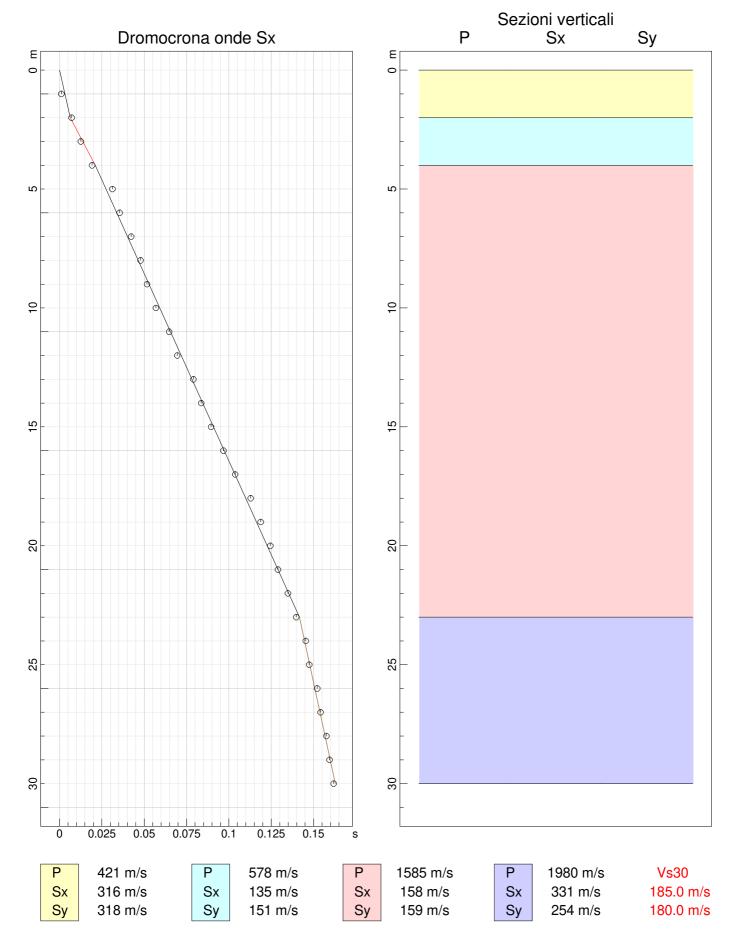

- VS variabile tra 331 e 254 m/s e spessore di circa 7m, riconducibile probabilmente a sabbie addensate;
- VP circa 1980 m/s e spessore di circa 7m, riconducibile probabilmente a sabbie addensate;

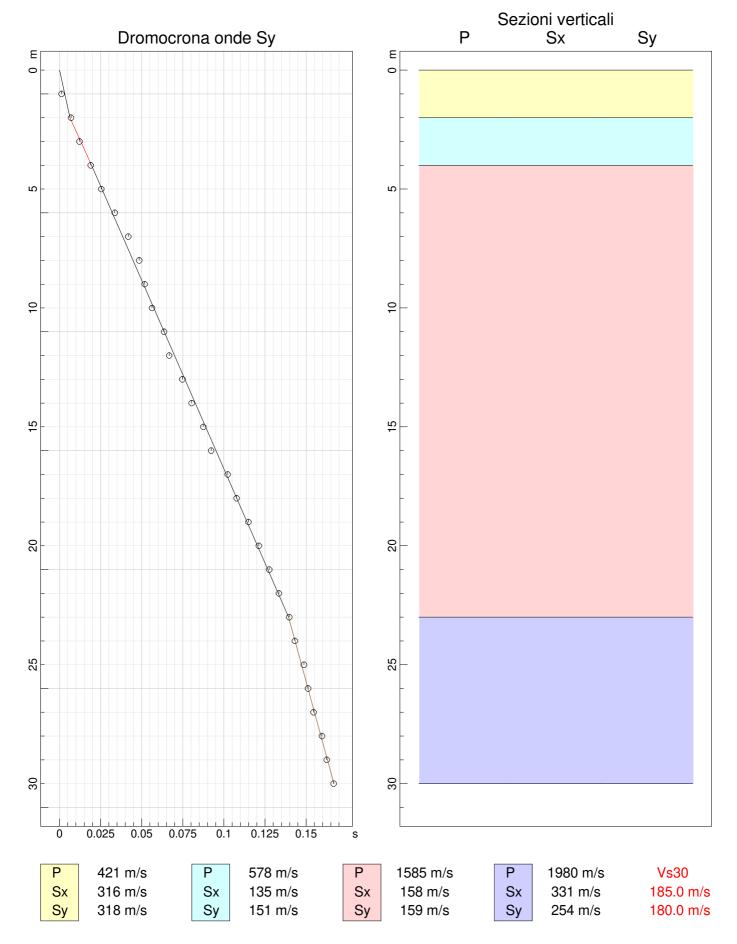
Lucca, 29 Giugno 2021


#### SISMOGRAMMI E PRIMI ARRIVI - ONDE P




#### SISMOGRAMMI E PRIMI ARRIVI - ONDE SX





#### SISMOGRAMMI E PRIMI ARRIVI - ONDE Sy











#### ANALISI SISMICA DOWN-HOLE

#### DISTANZA DELLO SPARO DA BOCCA FORO

Distanza = 3.00 [m]

#### PRIMI ARRIVI

| N° Geof. | Profondità | Onde P [ms] | Onde S (X) | Onde S (Y) | Onde P     | Onde S (X) | Onde S (Y) |
|----------|------------|-------------|------------|------------|------------|------------|------------|
|          | [m]        |             | [ms]       | [ms]       | (corretti) | (corretti) | (corretti) |
|          |            |             |            |            | [ms]       | [ms]       | [ms]       |
| 1        | 1.00       | 8.18        | 3.38       | 3.95       | 2.59       | 1.07       | 1.25       |
| 1        | 1.00       | 0.10        | 3.36       | 3.33       | 2.33       | 1.07       | 1.25       |
| 2        | 2.00       | 8.45        | 12.87      | 12.65      | 4.69       | 7.14       | 7.02       |
| 3        | 3.00       | 9.23        | 17.81      | 17.16      | 6.53       | 12.59      | 12.13      |
| 4        | 4.00       | 9.95        | 24.05      | 23.71      | 7.96       | 19.24      | 18.97      |
| 5        | 5.00       | 10.14       | 36.40      | 29.64      | 8.69       | 31.21      | 25.42      |
| 6        | 6.00       | 10.66       | 39.65      | 37.57      | 9.53       | 35.46      | 33.60      |
| 7        | 7.00       | 11.18       | 46.02      | 45.50      | 10.28      | 42.30      | 41.82      |
| 8        | 8.00       | 11.57       | 51.09      | 51.74      | 10.83      | 47.84      | 48.45      |
| 9        | 9.00       | 12.09       | 54.47      | 54.60      | 11.47      | 51.67      | 51.80      |
| 10       | 10.00      | 12.61       | 59.41      | 58.76      | 12.08      | 56.90      | 56.28      |
| 11       | 11.00      | 13.24       | 67.08      | 65.91      | 12.77      | 64.72      | 63.59      |
| 12       | 12.00      | 13.73       | 71.63      | 68.77      | 13.32      | 69.49      | 66.72      |
| 13       | 13.00      | 14.44       | 81.12      | 76.70      | 14.07      | 79.04      | 74.74      |
| 14       | 14.00      | 15.07       | 85.54      | 82.20      | 14.74      | 83.64      | 80.38      |
| 15       | 15.00      | 15.37       | 91.26      | 89.18      | 15.07      | 89.49      | 87.45      |
| 16       | 16.00      | 16.05       | 98.41      | 93.86      | 15.77      | 96.72      | 92.25      |

| -  |       |       |        |        |       |        | -      |
|----|-------|-------|--------|--------|-------|--------|--------|
| 17 | 17.00 | 16.50 | 105.30 | 103.87 | 16.24 | 103.70 | 102.29 |
| 18 | 18.00 | 17.17 | 114.40 | 109.20 | 16.93 | 112.84 | 107.71 |
| 19 | 19.00 | 17.95 | 120.25 | 116.35 | 17.73 | 118.78 | 114.93 |
| 20 | 20.00 | 18.46 | 125.84 | 122.59 | 18.26 | 124.45 | 121.23 |
| 21 | 21.00 | 19.00 | 130.26 | 128.83 | 18.81 | 128.95 | 127.54 |
| 22 | 22.00 | 19.76 | 136.11 | 134.68 | 19.58 | 134.86 | 133.45 |
| 23 | 23.00 | 20.39 | 140.92 | 140.92 | 20.21 | 139.74 | 139.74 |
| 24 | 24.00 | 20.80 | 146.51 | 144.30 | 20.64 | 145.38 | 143.19 |
| 25 | 25.00 | 21.32 | 148.46 | 149.76 | 21.17 | 147.40 | 148.69 |
| 26 | 26.00 | 21.84 | 153.14 | 152.23 | 21.70 | 152.13 | 151.23 |
| 27 | 27.00 | 22.36 | 155.09 | 155.48 | 22.22 | 154.14 | 154.53 |
| 28 | 28.00 | 22.85 | 158.47 | 160.55 | 22.72 | 157.57 | 159.64 |
| 29 | 29.00 | 23.45 | 160.29 | 163.41 | 23.33 | 159.44 | 162.54 |
| 30 | 30.00 | 23.79 | 162.63 | 167.57 | 23.67 | 161.82 | 166.74 |

#### VELOCITA' ONDE P

| Strato | Profondità [m] | Velocità [m/s] |
|--------|----------------|----------------|
| 1      | 2              | 421            |
| 2      | 4              | 578            |
| 3      | 23             | 1585           |
| 4      | 30             | 1980           |

#### PARAMETRI ONDE SX

| Strato | Profondità [m] | Velocità [m/s] | Poisson [-] | Shear [kPa] | Young [kPa] | Bulk [kPa] |
|--------|----------------|----------------|-------------|-------------|-------------|------------|
| 1      | 2              | 316            | n.a.        | n.a.        | n.a.        | n.a.       |
| 2      | 4              | 135            | n.a.        | n.a.        | n.a.        | n.a.       |
| 3      | 23             | 158            | n.a.        | n.a.        | n.a.        | n.a.       |
| 4      | 30             | 331            | n.a.        | n.a.        | n.a.        | n.a.       |

#### PARAMETRI ONDE SY

| Strato | Profondità [m] | Velocità [m/s] | Poisson [-] | Shear [kPa] | Young [kPa] | Bulk [kPa] |
|--------|----------------|----------------|-------------|-------------|-------------|------------|
| 1      | 2              | 318            | n.a.        | n.a.        | n.a.        | n.a.       |
| 2      | 4              | 151            | n.a.        | n.a.        | n.a.        | n.a.       |
| 3      | 23             | 159            | n.a.        | n.a.        | n.a.        | n.a.       |
| 4      | 30             | 254            | n.a.        | n.a.        | n.a.        | n.a.       |

VELOCITA' MEDIE VS30 a partire da p.c.

| Geofono        | VS30 [m/s] |
|----------------|------------|
| orizzontale Sx | 185.0      |
| orizzontale Sy | 180.0      |